M. Rodwell, E. Lind, Z. Griffith, S. Bank, A. M. Crook, U. Singisetti, M. Wistey, G. Burek, A. Gossard
{"title":"基于inp集成电路的频率限制","authors":"M. Rodwell, E. Lind, Z. Griffith, S. Bank, A. M. Crook, U. Singisetti, M. Wistey, G. Burek, A. Gossard","doi":"10.1109/ICIPRM.2007.380676","DOIUrl":null,"url":null,"abstract":"We examine the limits in scaling of InP-based bipolar and field effect transistors for increased device bandwidth. With InP-based HBTs, emitter and base contact resistivities and IC thermal resistance are the major limits to increased device bandwidth; devices with 1-1.5 THz simultaneous ftau and fmax are feasible. Major challenges faced in developing either InGaAs HEMTs having THz cutoff frequencies or InGaAs-channel MOSFETs having drive current consistent with the 22 nm ITRS objectives include the low two-dimensional effective density of states and the high bound state energies in narrow quantum wells.","PeriodicalId":352388,"journal":{"name":"2007 IEEE 19th International Conference on Indium Phosphide & Related Materials","volume":"541 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Frequency Limits of InP-based Integrated Circuits\",\"authors\":\"M. Rodwell, E. Lind, Z. Griffith, S. Bank, A. M. Crook, U. Singisetti, M. Wistey, G. Burek, A. Gossard\",\"doi\":\"10.1109/ICIPRM.2007.380676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the limits in scaling of InP-based bipolar and field effect transistors for increased device bandwidth. With InP-based HBTs, emitter and base contact resistivities and IC thermal resistance are the major limits to increased device bandwidth; devices with 1-1.5 THz simultaneous ftau and fmax are feasible. Major challenges faced in developing either InGaAs HEMTs having THz cutoff frequencies or InGaAs-channel MOSFETs having drive current consistent with the 22 nm ITRS objectives include the low two-dimensional effective density of states and the high bound state energies in narrow quantum wells.\",\"PeriodicalId\":352388,\"journal\":{\"name\":\"2007 IEEE 19th International Conference on Indium Phosphide & Related Materials\",\"volume\":\"541 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 19th International Conference on Indium Phosphide & Related Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.2007.380676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 19th International Conference on Indium Phosphide & Related Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2007.380676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We examine the limits in scaling of InP-based bipolar and field effect transistors for increased device bandwidth. With InP-based HBTs, emitter and base contact resistivities and IC thermal resistance are the major limits to increased device bandwidth; devices with 1-1.5 THz simultaneous ftau and fmax are feasible. Major challenges faced in developing either InGaAs HEMTs having THz cutoff frequencies or InGaAs-channel MOSFETs having drive current consistent with the 22 nm ITRS objectives include the low two-dimensional effective density of states and the high bound state energies in narrow quantum wells.