{"title":"基于改进Quine-McCluskey算法的三元逻辑综合","authors":"Sung-Yun Lee, Sunmean Kim, Seokhyeong Kang","doi":"10.1109/ISMVL.2019.00035","DOIUrl":null,"url":null,"abstract":"Logic synthesis has been increasingly important to accelerate the development of high-level systems. However, in multi-valued logic, logic synthesis methods that can process emerging devices are deficient. We propose and automate a method to synthesize ternary logic circuits. Our design of ternary logic circuits is based on static gate design, and exploits carbon nanotube field-effect transistors. We optimize ternary logic circuits by minimizing the number of transistors with a modified Quine-McCluskey algorithm. Our proposed method has improved power-delay product by 52.72 % over the state-of-the-art method for a ternary half adder, and by 68.06 % for a ternary multiplier. We also have improved power-delay product by 37.30 % over the state-of-the-art method for a ternary full adder that has high load capacitance. Our design has an average of 42.43 % fewer transistors than the existing design for circuits that have large number of inputs. As circuits become larger, the improved power-delay product and reduced transistor count are advantageous.","PeriodicalId":329986,"journal":{"name":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ternary Logic Synthesis with Modified Quine-McCluskey Algorithm\",\"authors\":\"Sung-Yun Lee, Sunmean Kim, Seokhyeong Kang\",\"doi\":\"10.1109/ISMVL.2019.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logic synthesis has been increasingly important to accelerate the development of high-level systems. However, in multi-valued logic, logic synthesis methods that can process emerging devices are deficient. We propose and automate a method to synthesize ternary logic circuits. Our design of ternary logic circuits is based on static gate design, and exploits carbon nanotube field-effect transistors. We optimize ternary logic circuits by minimizing the number of transistors with a modified Quine-McCluskey algorithm. Our proposed method has improved power-delay product by 52.72 % over the state-of-the-art method for a ternary half adder, and by 68.06 % for a ternary multiplier. We also have improved power-delay product by 37.30 % over the state-of-the-art method for a ternary full adder that has high load capacitance. Our design has an average of 42.43 % fewer transistors than the existing design for circuits that have large number of inputs. As circuits become larger, the improved power-delay product and reduced transistor count are advantageous.\",\"PeriodicalId\":329986,\"journal\":{\"name\":\"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2019.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ternary Logic Synthesis with Modified Quine-McCluskey Algorithm
Logic synthesis has been increasingly important to accelerate the development of high-level systems. However, in multi-valued logic, logic synthesis methods that can process emerging devices are deficient. We propose and automate a method to synthesize ternary logic circuits. Our design of ternary logic circuits is based on static gate design, and exploits carbon nanotube field-effect transistors. We optimize ternary logic circuits by minimizing the number of transistors with a modified Quine-McCluskey algorithm. Our proposed method has improved power-delay product by 52.72 % over the state-of-the-art method for a ternary half adder, and by 68.06 % for a ternary multiplier. We also have improved power-delay product by 37.30 % over the state-of-the-art method for a ternary full adder that has high load capacitance. Our design has an average of 42.43 % fewer transistors than the existing design for circuits that have large number of inputs. As circuits become larger, the improved power-delay product and reduced transistor count are advantageous.