基于压缩感知的多核系统语音压缩

T. Gunawan, O. Khalifa, A. Shafie, E. Ambikairajah
{"title":"基于压缩感知的多核系统语音压缩","authors":"T. Gunawan, O. Khalifa, A. Shafie, E. Ambikairajah","doi":"10.1109/ICOM.2011.5937130","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals, i.e. speech signal. Compressive sensing is a new paradigm of acquiring signals, fundamentally different from uniform rate digitization followed by compression, often used for transmission or storage. In this paper, a novel algorithm for speech coding utilizing CS principle is developed. The sparsity of speech signals is exploited using gammatone filterbank and Discrete Cosine Transform (DCT) in which the compressive sensing principle is then applied to the sparse subband signals. All parameters will be optimized using informal listening test and Perceptual Evaluation of Speech Quality (PESQ). In order to further reduce the bit requirement, vector quantization using codebook of the training signals will be added to the system. The performance of overall algorithms will be evaluated based on the processing time and speech quality. Finally, to speed up the process, the proposed algorithm will be implemented in a multicore system, i.e. six cores, using Single Program Multiple Data (SPMD) parallel paradigm.","PeriodicalId":376337,"journal":{"name":"2011 4th International Conference on Mechatronics (ICOM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Speech compression using compressive sensing on a multicore system\",\"authors\":\"T. Gunawan, O. Khalifa, A. Shafie, E. Ambikairajah\",\"doi\":\"10.1109/ICOM.2011.5937130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals, i.e. speech signal. Compressive sensing is a new paradigm of acquiring signals, fundamentally different from uniform rate digitization followed by compression, often used for transmission or storage. In this paper, a novel algorithm for speech coding utilizing CS principle is developed. The sparsity of speech signals is exploited using gammatone filterbank and Discrete Cosine Transform (DCT) in which the compressive sensing principle is then applied to the sparse subband signals. All parameters will be optimized using informal listening test and Perceptual Evaluation of Speech Quality (PESQ). In order to further reduce the bit requirement, vector quantization using codebook of the training signals will be added to the system. The performance of overall algorithms will be evaluated based on the processing time and speech quality. Finally, to speed up the process, the proposed algorithm will be implemented in a multicore system, i.e. six cores, using Single Program Multiple Data (SPMD) parallel paradigm.\",\"PeriodicalId\":376337,\"journal\":{\"name\":\"2011 4th International Conference on Mechatronics (ICOM)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 4th International Conference on Mechatronics (ICOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOM.2011.5937130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 4th International Conference on Mechatronics (ICOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOM.2011.5937130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

压缩感知(CS)是一种对稀疏可压缩信号即语音信号进行同步感知和压缩的新方法。压缩感知是一种获取信号的新模式,与压缩后的匀速数字化有本质区别,通常用于传输或存储。本文提出了一种利用CS原理进行语音编码的新算法。利用伽玛酮滤波器组和离散余弦变换(DCT)来利用语音信号的稀疏性,然后将压缩感知原理应用于稀疏子带信号。所有参数将通过非正式听力测试和语音质量感知评价(PESQ)进行优化。为了进一步降低对比特的需求,系统将加入利用训练信号码本进行矢量量化的方法。整体算法的性能将根据处理时间和语音质量进行评估。最后,为了加快过程,所提出的算法将在多核系统中实现,即六核,使用单程序多数据(SPMD)并行范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech compression using compressive sensing on a multicore system
Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals, i.e. speech signal. Compressive sensing is a new paradigm of acquiring signals, fundamentally different from uniform rate digitization followed by compression, often used for transmission or storage. In this paper, a novel algorithm for speech coding utilizing CS principle is developed. The sparsity of speech signals is exploited using gammatone filterbank and Discrete Cosine Transform (DCT) in which the compressive sensing principle is then applied to the sparse subband signals. All parameters will be optimized using informal listening test and Perceptual Evaluation of Speech Quality (PESQ). In order to further reduce the bit requirement, vector quantization using codebook of the training signals will be added to the system. The performance of overall algorithms will be evaluated based on the processing time and speech quality. Finally, to speed up the process, the proposed algorithm will be implemented in a multicore system, i.e. six cores, using Single Program Multiple Data (SPMD) parallel paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信