基于数据挖掘技术的自适应禁忌搜索系数调优

E. Ikonomovska, D. Gjorgjevik, S. Loskovska
{"title":"基于数据挖掘技术的自适应禁忌搜索系数调优","authors":"E. Ikonomovska, D. Gjorgjevik, S. Loskovska","doi":"10.1109/EURCON.2007.4400424","DOIUrl":null,"url":null,"abstract":"This paper describes the Adaptive Tabu Search algorithm (A-TS), an improved tabu search algorithm for combinatorial optimization. A-TS uses a novel approach for evaluation of the moves, incorporated in a new complex evaluation function. A new decision making mechanism triggers the evaluation function providing means for avoiding possible infinite loops. The new evaluation function implements effective diversification strategy that prevents the search from stagnation. It also incorporates two adaptive coefficients that control the influence of the aspiration criteria and the long-term memory, respectively. The adaptive nature of A-TS is based on these two adaptive coefficients. This article also presents a new data mining approach towards improving the performance of A-TS by tuning these coefficients. A-TS performance is applied to the Quadratic Assignment Problem. Published results from other authors are used for comparison. The experimental results show that A-TS performs favorably against other established techniques.","PeriodicalId":191423,"journal":{"name":"EUROCON 2007 - The International Conference on \"Computer as a Tool\"","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using Data Mining Technique for Coefficient Tuning of an Adaptive Tabu Search\",\"authors\":\"E. Ikonomovska, D. Gjorgjevik, S. Loskovska\",\"doi\":\"10.1109/EURCON.2007.4400424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the Adaptive Tabu Search algorithm (A-TS), an improved tabu search algorithm for combinatorial optimization. A-TS uses a novel approach for evaluation of the moves, incorporated in a new complex evaluation function. A new decision making mechanism triggers the evaluation function providing means for avoiding possible infinite loops. The new evaluation function implements effective diversification strategy that prevents the search from stagnation. It also incorporates two adaptive coefficients that control the influence of the aspiration criteria and the long-term memory, respectively. The adaptive nature of A-TS is based on these two adaptive coefficients. This article also presents a new data mining approach towards improving the performance of A-TS by tuning these coefficients. A-TS performance is applied to the Quadratic Assignment Problem. Published results from other authors are used for comparison. The experimental results show that A-TS performs favorably against other established techniques.\",\"PeriodicalId\":191423,\"journal\":{\"name\":\"EUROCON 2007 - The International Conference on \\\"Computer as a Tool\\\"\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUROCON 2007 - The International Conference on \\\"Computer as a Tool\\\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURCON.2007.4400424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUROCON 2007 - The International Conference on \"Computer as a Tool\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURCON.2007.4400424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种改进的组合优化禁忌搜索算法——自适应禁忌搜索算法。a - ts使用了一种新的方法来评估移动,合并在一个新的复杂的评估函数。一种新的决策机制触发了评估函数,为避免可能的无限循环提供了手段。新的评价函数实现了有效的多样化策略,避免了搜索的停滞。它还结合了两个自适应系数,分别控制吸入标准和长期记忆的影响。A-TS的自适应特性基于这两个自适应系数。本文还提出了一种新的数据挖掘方法,通过调优这些系数来提高a - ts的性能。将A-TS性能应用于二次分配问题。其他作者发表的结果用于比较。实验结果表明,与其他已有的技术相比,A-TS具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Data Mining Technique for Coefficient Tuning of an Adaptive Tabu Search
This paper describes the Adaptive Tabu Search algorithm (A-TS), an improved tabu search algorithm for combinatorial optimization. A-TS uses a novel approach for evaluation of the moves, incorporated in a new complex evaluation function. A new decision making mechanism triggers the evaluation function providing means for avoiding possible infinite loops. The new evaluation function implements effective diversification strategy that prevents the search from stagnation. It also incorporates two adaptive coefficients that control the influence of the aspiration criteria and the long-term memory, respectively. The adaptive nature of A-TS is based on these two adaptive coefficients. This article also presents a new data mining approach towards improving the performance of A-TS by tuning these coefficients. A-TS performance is applied to the Quadratic Assignment Problem. Published results from other authors are used for comparison. The experimental results show that A-TS performs favorably against other established techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信