寄存器传输水平的统计功率估计

Y. A. Durrani, T. Riesgo, F. Machado
{"title":"寄存器传输水平的统计功率估计","authors":"Y. A. Durrani, T. Riesgo, F. Machado","doi":"10.1109/MIXDES.2006.1706635","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a macromodeling approach that allows to estimate the power dissipation of intellectual property (IP) components to their statistical knowledge of the primary inputs. Our approach can handle combinational and sequential circuits for register transfer level. During power estimation procedure, the sequence of an input stream is generated by a genetic algorithm using input metrics. Then, a Monte Carlo zero delay simulation is performed and power dissipation is predicted by a macromodel function. In our experiments with IP macro-blocks, the results are effective and highly correlated, with an average error of just 1%. Our model is parameterizable and provides accurate power estimation","PeriodicalId":318768,"journal":{"name":"Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Statistical Power Estimation For Register Transfer Level\",\"authors\":\"Y. A. Durrani, T. Riesgo, F. Machado\",\"doi\":\"10.1109/MIXDES.2006.1706635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a macromodeling approach that allows to estimate the power dissipation of intellectual property (IP) components to their statistical knowledge of the primary inputs. Our approach can handle combinational and sequential circuits for register transfer level. During power estimation procedure, the sequence of an input stream is generated by a genetic algorithm using input metrics. Then, a Monte Carlo zero delay simulation is performed and power dissipation is predicted by a macromodel function. In our experiments with IP macro-blocks, the results are effective and highly correlated, with an average error of just 1%. Our model is parameterizable and provides accurate power estimation\",\"PeriodicalId\":318768,\"journal\":{\"name\":\"Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIXDES.2006.1706635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIXDES.2006.1706635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在本文中,我们提出了一种宏观建模方法,该方法允许估计知识产权(IP)组件对其主要输入的统计知识的功耗。我们的方法可以处理寄存器传输级的组合电路和顺序电路。在功率估计过程中,输入流的序列由使用输入度量的遗传算法生成。然后,进行了蒙特卡罗零延迟仿真,并利用宏模型函数预测了功耗。在我们的IP宏块实验中,结果是有效且高度相关的,平均误差仅为1%。我们的模型是可参数化的,并提供准确的功率估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Power Estimation For Register Transfer Level
In this paper, we propose a macromodeling approach that allows to estimate the power dissipation of intellectual property (IP) components to their statistical knowledge of the primary inputs. Our approach can handle combinational and sequential circuits for register transfer level. During power estimation procedure, the sequence of an input stream is generated by a genetic algorithm using input metrics. Then, a Monte Carlo zero delay simulation is performed and power dissipation is predicted by a macromodel function. In our experiments with IP macro-blocks, the results are effective and highly correlated, with an average error of just 1%. Our model is parameterizable and provides accurate power estimation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信