基于肤色递归聚类的人脸检测与多线性PCA识别

Padma Polash Paul, M. Monwar, M. Gavrilova
{"title":"基于肤色递归聚类的人脸检测与多线性PCA识别","authors":"Padma Polash Paul, M. Monwar, M. Gavrilova","doi":"10.1109/CW.2011.44","DOIUrl":null,"url":null,"abstract":"In this paper, we present a robust approach for face recognition from video sequences. An automatic face detectoris employed which uses modified skin color modeling to detect human skin regions from the video sequences. The presence or absence of face in each region is verified by means of height width proportion and a Neural Network based template matching scheme. The obtained face images are then projected onto a feature space, defined by Multilinear Principal Component Analysis (MPCA), to produce the biometric feature template. Recognition is performed by projecting anew image onto the feature spaces by the MPCA that generalizes not only the classical PCA solution but also a number of the so-called 2-D PCA algorithms and then classifying the face by comparing its position in the feature spaces with the positions of known individuals. The proposed method is applicable to security systems, secure human computer interaction, visual communication systems (secure video conferencing) and virtual world environments.","PeriodicalId":231796,"journal":{"name":"2011 International Conference on Cyberworlds","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Face Detection Using Skin Color Recursive Clustering and Recognition Using Multilinear PCA\",\"authors\":\"Padma Polash Paul, M. Monwar, M. Gavrilova\",\"doi\":\"10.1109/CW.2011.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a robust approach for face recognition from video sequences. An automatic face detectoris employed which uses modified skin color modeling to detect human skin regions from the video sequences. The presence or absence of face in each region is verified by means of height width proportion and a Neural Network based template matching scheme. The obtained face images are then projected onto a feature space, defined by Multilinear Principal Component Analysis (MPCA), to produce the biometric feature template. Recognition is performed by projecting anew image onto the feature spaces by the MPCA that generalizes not only the classical PCA solution but also a number of the so-called 2-D PCA algorithms and then classifying the face by comparing its position in the feature spaces with the positions of known individuals. The proposed method is applicable to security systems, secure human computer interaction, visual communication systems (secure video conferencing) and virtual world environments.\",\"PeriodicalId\":231796,\"journal\":{\"name\":\"2011 International Conference on Cyberworlds\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Cyberworlds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2011.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Cyberworlds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2011.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种鲁棒的视频序列人脸识别方法。采用一种基于改进肤色建模的自动人脸检测器,从视频序列中检测出人体的皮肤区域。通过高宽比例和基于神经网络的模板匹配方案验证每个区域是否存在人脸。然后将获得的人脸图像投影到由多线性主成分分析(MPCA)定义的特征空间中,以产生生物特征模板。识别是通过MPCA将新图像投影到特征空间上来完成的,MPCA不仅推广了经典的PCA解决方案,而且还推广了许多所谓的二维PCA算法,然后通过比较其在特征空间中的位置与已知个体的位置来对人脸进行分类。该方法适用于安全系统、安全人机交互、视觉通信系统(安全视频会议)和虚拟世界环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Detection Using Skin Color Recursive Clustering and Recognition Using Multilinear PCA
In this paper, we present a robust approach for face recognition from video sequences. An automatic face detectoris employed which uses modified skin color modeling to detect human skin regions from the video sequences. The presence or absence of face in each region is verified by means of height width proportion and a Neural Network based template matching scheme. The obtained face images are then projected onto a feature space, defined by Multilinear Principal Component Analysis (MPCA), to produce the biometric feature template. Recognition is performed by projecting anew image onto the feature spaces by the MPCA that generalizes not only the classical PCA solution but also a number of the so-called 2-D PCA algorithms and then classifying the face by comparing its position in the feature spaces with the positions of known individuals. The proposed method is applicable to security systems, secure human computer interaction, visual communication systems (secure video conferencing) and virtual world environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信