{"title":"基于自适应神经模糊推理系统的太阳能光伏组件最大功率点跟踪","authors":"A. Iqbal, H. Abu-Rub, S. Ahmed","doi":"10.1109/ENERGYCON.2010.5771737","DOIUrl":null,"url":null,"abstract":"This paper presents and analyses the operation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) based maximum power point tracker (MPPT) for solar photovoltaic (SPV) energy generation system. The MPPT works on the principle of adjusting the voltage of the solar PV modules by changing the duty ratio of the boost converter. The duty ratio of boost converter is calculated for given solar irradiance and temperature condition by a closed-loop control scheme. The ANFIS is trained to generate the maximum power corresponding to the given solar irradiance level and temperature. The response of ANFIS based control system is highly precise and offers very fast response. Simulation results are provided to validate the concept.","PeriodicalId":386008,"journal":{"name":"2010 IEEE International Energy Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module\",\"authors\":\"A. Iqbal, H. Abu-Rub, S. Ahmed\",\"doi\":\"10.1109/ENERGYCON.2010.5771737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and analyses the operation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) based maximum power point tracker (MPPT) for solar photovoltaic (SPV) energy generation system. The MPPT works on the principle of adjusting the voltage of the solar PV modules by changing the duty ratio of the boost converter. The duty ratio of boost converter is calculated for given solar irradiance and temperature condition by a closed-loop control scheme. The ANFIS is trained to generate the maximum power corresponding to the given solar irradiance level and temperature. The response of ANFIS based control system is highly precise and offers very fast response. Simulation results are provided to validate the concept.\",\"PeriodicalId\":386008,\"journal\":{\"name\":\"2010 IEEE International Energy Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCON.2010.5771737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCON.2010.5771737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module
This paper presents and analyses the operation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) based maximum power point tracker (MPPT) for solar photovoltaic (SPV) energy generation system. The MPPT works on the principle of adjusting the voltage of the solar PV modules by changing the duty ratio of the boost converter. The duty ratio of boost converter is calculated for given solar irradiance and temperature condition by a closed-loop control scheme. The ANFIS is trained to generate the maximum power corresponding to the given solar irradiance level and temperature. The response of ANFIS based control system is highly precise and offers very fast response. Simulation results are provided to validate the concept.