基于受限玻尔兹曼机的无监督音频分割

A. Pikrakis
{"title":"基于受限玻尔兹曼机的无监督音频分割","authors":"A. Pikrakis","doi":"10.1109/IISA.2014.6878838","DOIUrl":null,"url":null,"abstract":"In this paper the Conditional Restricted Boltzmann Machine (CRBM) is employed in the context of unsupervised audio segmentation. The CRBM acts as a temporal modeling method and learns, from a maximum likelihood perspective, the temporal relationships of the feature vectors that have been extracted from a large corpus of training data. After the CRBM has been trained, we quantify the correlation of the activation of the neurons of the hidden layer for successive feature vectors by means of an appropriately defined similarity function. A simple thresholding scheme is then applied on the output of the similarity function to segment automatically the audio recording. Our experiments have been carried out on a large corpus of documentaries. We provide an interpretation of the segmentation results and comment on the segmentation efficiency of the method.","PeriodicalId":298835,"journal":{"name":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unsupervised audio segmentation based on Restricted Boltzmann Machines\",\"authors\":\"A. Pikrakis\",\"doi\":\"10.1109/IISA.2014.6878838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the Conditional Restricted Boltzmann Machine (CRBM) is employed in the context of unsupervised audio segmentation. The CRBM acts as a temporal modeling method and learns, from a maximum likelihood perspective, the temporal relationships of the feature vectors that have been extracted from a large corpus of training data. After the CRBM has been trained, we quantify the correlation of the activation of the neurons of the hidden layer for successive feature vectors by means of an appropriately defined similarity function. A simple thresholding scheme is then applied on the output of the similarity function to segment automatically the audio recording. Our experiments have been carried out on a large corpus of documentaries. We provide an interpretation of the segmentation results and comment on the segmentation efficiency of the method.\",\"PeriodicalId\":298835,\"journal\":{\"name\":\"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2014.6878838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2014.6878838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将条件限制玻尔兹曼机(CRBM)应用于无监督音频分割。CRBM作为一种时间建模方法,从最大似然的角度学习从大量训练数据中提取的特征向量的时间关系。在对CRBM进行训练后,我们通过适当定义的相似性函数来量化连续特征向量的隐藏层神经元激活的相关性。然后对相似度函数的输出应用简单的阈值分割方案,对录音进行自动分割。我们的实验是在一个大的纪录片语料库上进行的。对分割结果进行了解释,并对该方法的分割效率进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised audio segmentation based on Restricted Boltzmann Machines
In this paper the Conditional Restricted Boltzmann Machine (CRBM) is employed in the context of unsupervised audio segmentation. The CRBM acts as a temporal modeling method and learns, from a maximum likelihood perspective, the temporal relationships of the feature vectors that have been extracted from a large corpus of training data. After the CRBM has been trained, we quantify the correlation of the activation of the neurons of the hidden layer for successive feature vectors by means of an appropriately defined similarity function. A simple thresholding scheme is then applied on the output of the similarity function to segment automatically the audio recording. Our experiments have been carried out on a large corpus of documentaries. We provide an interpretation of the segmentation results and comment on the segmentation efficiency of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信