基于人工神经网络的模式噪声预测

Sang Kwon Lee
{"title":"基于人工神经网络的模式噪声预测","authors":"Sang Kwon Lee","doi":"10.54941/ahfe1001465","DOIUrl":null,"url":null,"abstract":"In early design stage of tire pattern, it is very useful to predict noise level associated with tire pattern. Artificial neural network (ANN) was used for development of the model for the prediction of tire pattern noise recently. The ANN used supervised training method which extracts the feature applying Gaussian curve fitting to the tread profile spectrum of tire pattern and used it as the input of ANN. This method requests laser scanning for tire pattern of a real tire. In early design, there is no real tire. In this study, the convolutional neural network (CNN) to predict tire pattern noise was developed based on non-supervised training method. Two Learning algorithms such as stochastic gradient descent (SGD) and RMSProp were studied in the CNN model for the comparison of their learning performance. RMSProp algorithm was suggested for the CNN model. In this case, a pattern image of a tire to be designed was used as the input of CNN. The CNN to predict tire pattern noise was developed and its utility in the early design stage of tire was discussed. In the study, pattern noise for 28 tires were measured in the anechoic chamber and their pattern images were scanned. For the training of ANN and CNN, pattern noise for 24 tires and their pattern images were used. The trained ANN and CNN were validated respectively with 4 tires which were not used for the training of two neural networks. Finally, two networks were successfully developed and validated for the prediction of tire pattern noise. The trained CNN can be used for the prediction of pattern noise for a tire to be designed in early design stage using the only drawing image of tire whilst ANN can be used for the prediction of pattern noise for a real tire in development stage.","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern noise prediction using Artificial Neural Network\",\"authors\":\"Sang Kwon Lee\",\"doi\":\"10.54941/ahfe1001465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In early design stage of tire pattern, it is very useful to predict noise level associated with tire pattern. Artificial neural network (ANN) was used for development of the model for the prediction of tire pattern noise recently. The ANN used supervised training method which extracts the feature applying Gaussian curve fitting to the tread profile spectrum of tire pattern and used it as the input of ANN. This method requests laser scanning for tire pattern of a real tire. In early design, there is no real tire. In this study, the convolutional neural network (CNN) to predict tire pattern noise was developed based on non-supervised training method. Two Learning algorithms such as stochastic gradient descent (SGD) and RMSProp were studied in the CNN model for the comparison of their learning performance. RMSProp algorithm was suggested for the CNN model. In this case, a pattern image of a tire to be designed was used as the input of CNN. The CNN to predict tire pattern noise was developed and its utility in the early design stage of tire was discussed. In the study, pattern noise for 28 tires were measured in the anechoic chamber and their pattern images were scanned. For the training of ANN and CNN, pattern noise for 24 tires and their pattern images were used. The trained ANN and CNN were validated respectively with 4 tires which were not used for the training of two neural networks. Finally, two networks were successfully developed and validated for the prediction of tire pattern noise. The trained CNN can be used for the prediction of pattern noise for a tire to be designed in early design stage using the only drawing image of tire whilst ANN can be used for the prediction of pattern noise for a real tire in development stage.\",\"PeriodicalId\":405313,\"journal\":{\"name\":\"Artificial Intelligence and Social Computing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1001465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1001465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在轮胎花纹设计的早期,预测与花纹相关的噪声水平是非常有用的。近年来,人工神经网络(ANN)被用于轮胎花纹噪声预测模型的开发。人工神经网络采用监督训练方法,对轮胎花纹的胎面轮廓谱应用高斯曲线拟合提取特征,并将其作为人工神经网络的输入。该方法要求对真实轮胎的花纹进行激光扫描。在早期的设计中,没有真正的轮胎。在本研究中,基于无监督训练方法,开发了卷积神经网络(CNN)来预测轮胎花纹噪声。在CNN模型中研究了随机梯度下降(SGD)和RMSProp两种学习算法,比较了它们的学习性能。对CNN模型提出了RMSProp算法。在本例中,使用待设计轮胎的图案图像作为CNN的输入。提出了一种预测轮胎花纹噪声的CNN方法,并对其在轮胎设计初期的应用进行了探讨。在消声室中测量了28个轮胎的花纹噪声,并对其花纹图像进行了扫描。在ANN和CNN的训练中,使用了24个轮胎的模式噪声及其模式图像。训练后的ANN和CNN分别用4个轮胎进行验证,不用于两个神经网络的训练。最后,成功开发了两个网络,并对其进行了验证。训练后的CNN可以在设计初期使用唯一的轮胎绘图图像来预测待设计轮胎的模式噪声,而人工神经网络可以在开发阶段用于预测真实轮胎的模式噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern noise prediction using Artificial Neural Network
In early design stage of tire pattern, it is very useful to predict noise level associated with tire pattern. Artificial neural network (ANN) was used for development of the model for the prediction of tire pattern noise recently. The ANN used supervised training method which extracts the feature applying Gaussian curve fitting to the tread profile spectrum of tire pattern and used it as the input of ANN. This method requests laser scanning for tire pattern of a real tire. In early design, there is no real tire. In this study, the convolutional neural network (CNN) to predict tire pattern noise was developed based on non-supervised training method. Two Learning algorithms such as stochastic gradient descent (SGD) and RMSProp were studied in the CNN model for the comparison of their learning performance. RMSProp algorithm was suggested for the CNN model. In this case, a pattern image of a tire to be designed was used as the input of CNN. The CNN to predict tire pattern noise was developed and its utility in the early design stage of tire was discussed. In the study, pattern noise for 28 tires were measured in the anechoic chamber and their pattern images were scanned. For the training of ANN and CNN, pattern noise for 24 tires and their pattern images were used. The trained ANN and CNN were validated respectively with 4 tires which were not used for the training of two neural networks. Finally, two networks were successfully developed and validated for the prediction of tire pattern noise. The trained CNN can be used for the prediction of pattern noise for a tire to be designed in early design stage using the only drawing image of tire whilst ANN can be used for the prediction of pattern noise for a real tire in development stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信