拉丁地图的存在

Zhaoqi Zhang
{"title":"拉丁地图的存在","authors":"Zhaoqi Zhang","doi":"10.1145/3387168.3387252","DOIUrl":null,"url":null,"abstract":"The Latin square (or Latin cube) plays an important role in comparative experiment design. It is generally restricted to 2 or 3 dimensions [1]. For higher dimensions, a new definition - the Latin map - is used [5]. In this paper, the Latin map is studied in 3 aspects. Firstly, the distribution lemma is proved, which gives two conditions for a map to be a Latin map. Secondly, the distribution lemma is used to prove the existence and non-existence of two classes of Latin maps. Finally, an algorithm of finding a Latin map is introduced.","PeriodicalId":346739,"journal":{"name":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Latin Maps\",\"authors\":\"Zhaoqi Zhang\",\"doi\":\"10.1145/3387168.3387252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Latin square (or Latin cube) plays an important role in comparative experiment design. It is generally restricted to 2 or 3 dimensions [1]. For higher dimensions, a new definition - the Latin map - is used [5]. In this paper, the Latin map is studied in 3 aspects. Firstly, the distribution lemma is proved, which gives two conditions for a map to be a Latin map. Secondly, the distribution lemma is used to prove the existence and non-existence of two classes of Latin maps. Finally, an algorithm of finding a Latin map is introduced.\",\"PeriodicalId\":346739,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387168.3387252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387168.3387252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拉丁方块(或拉丁立方体)在比较实验设计中起着重要的作用。一般限于二维或三维[1]。对于更高的维度,使用了一个新的定义——拉丁地图[5]。本文从三个方面对拉丁地图进行了研究。首先证明了分布引理,给出了映射为拉丁映射的两个条件。其次,利用分布引理证明了两类拉丁映射的存在性和不存在性。最后,介绍了一种拉丁地图查找算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Latin Maps
The Latin square (or Latin cube) plays an important role in comparative experiment design. It is generally restricted to 2 or 3 dimensions [1]. For higher dimensions, a new definition - the Latin map - is used [5]. In this paper, the Latin map is studied in 3 aspects. Firstly, the distribution lemma is proved, which gives two conditions for a map to be a Latin map. Secondly, the distribution lemma is used to prove the existence and non-existence of two classes of Latin maps. Finally, an algorithm of finding a Latin map is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信