区间值数据基于L2距离的自组织映射

Chantal Hajjar, H. Hamdan
{"title":"区间值数据基于L2距离的自组织映射","authors":"Chantal Hajjar, H. Hamdan","doi":"10.1109/SACI.2011.5873021","DOIUrl":null,"url":null,"abstract":"The Self-Organizing Maps have been widely used as multidimensional unsupervised classifiers. The aim of this paper is to develop a self-organizing map for interval data. Due to the increasing use of such data in Data Mining, many clustering methods for interval data have been proposed this last decade. In this paper, we propose an algorithm to train the self-organizing map for interval data. We use an extension of the Euclidian distance to compare two vectors of intervals. In order to show the usefulness of our approach, we apply the proposed algorithm on real interval data issued from meteorological stations in China.","PeriodicalId":334381,"journal":{"name":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Self-organizing map based on L2 distance for interval-valued data\",\"authors\":\"Chantal Hajjar, H. Hamdan\",\"doi\":\"10.1109/SACI.2011.5873021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Self-Organizing Maps have been widely used as multidimensional unsupervised classifiers. The aim of this paper is to develop a self-organizing map for interval data. Due to the increasing use of such data in Data Mining, many clustering methods for interval data have been proposed this last decade. In this paper, we propose an algorithm to train the self-organizing map for interval data. We use an extension of the Euclidian distance to compare two vectors of intervals. In order to show the usefulness of our approach, we apply the proposed algorithm on real interval data issued from meteorological stations in China.\",\"PeriodicalId\":334381,\"journal\":{\"name\":\"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2011.5873021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2011.5873021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

自组织映射已被广泛用作多维无监督分类器。本文的目的是建立一个区间数据的自组织映射。由于区间数据在数据挖掘中的应用越来越多,近十年来提出了许多区间数据聚类方法。本文提出了一种训练区间数据自组织映射的算法。我们使用欧几里得距离的扩展来比较两个间隔向量。为了证明该方法的有效性,我们将该算法应用于中国气象站发布的实际间隔数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-organizing map based on L2 distance for interval-valued data
The Self-Organizing Maps have been widely used as multidimensional unsupervised classifiers. The aim of this paper is to develop a self-organizing map for interval data. Due to the increasing use of such data in Data Mining, many clustering methods for interval data have been proposed this last decade. In this paper, we propose an algorithm to train the self-organizing map for interval data. We use an extension of the Euclidian distance to compare two vectors of intervals. In order to show the usefulness of our approach, we apply the proposed algorithm on real interval data issued from meteorological stations in China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信