Xi Chen, Rui Xin, X. Lu, Z. Ou, Shing-Yeu Lii, Zijing Tian, Minghao Shi, Shihui Liu, Meina Song
{"title":"InterCLIP:将CLIP应用于具有三联体相似性的交互式图像检索","authors":"Xi Chen, Rui Xin, X. Lu, Z. Ou, Shing-Yeu Lii, Zijing Tian, Minghao Shi, Shihui Liu, Meina Song","doi":"10.1109/CCIS57298.2022.10016349","DOIUrl":null,"url":null,"abstract":"Interactive image retrieval is such task setting where a multi-modal query (reference image, feedback text) is provided, and the goal is to retrieve a target image which satisfies the changes described in feedback text based on the reference image. It offers a great promise for better user experience in a variety of fields such as e-commerce where the user can address their need with natural language and find the desired item iteratively. With the rising of Vision-Language Pre-trained(VLP) models, it has become a de facto to transfer rich knowledge learned from large-scale real-world data to downstream tasks. In this work, we propose a novel method called InterCLIP, which adapt the matching oriented VLP model CLIP, to the task. To further harness the power of CLIP, we propose to view the task as a combination of text-image retrieval and standard image search. Specifically we calculate candidate images’ similarity score with similarity within the triplet. This method allows fine-grained modelling which takes account of the relevance between three pairs within the triplet, and extensive experiments show our method achieves state-of-the-art results on the FashionIQ dataset.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InterCLIP: Adapting CLIP To Interactive Image Retrieval with Triplet Similarity\",\"authors\":\"Xi Chen, Rui Xin, X. Lu, Z. Ou, Shing-Yeu Lii, Zijing Tian, Minghao Shi, Shihui Liu, Meina Song\",\"doi\":\"10.1109/CCIS57298.2022.10016349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive image retrieval is such task setting where a multi-modal query (reference image, feedback text) is provided, and the goal is to retrieve a target image which satisfies the changes described in feedback text based on the reference image. It offers a great promise for better user experience in a variety of fields such as e-commerce where the user can address their need with natural language and find the desired item iteratively. With the rising of Vision-Language Pre-trained(VLP) models, it has become a de facto to transfer rich knowledge learned from large-scale real-world data to downstream tasks. In this work, we propose a novel method called InterCLIP, which adapt the matching oriented VLP model CLIP, to the task. To further harness the power of CLIP, we propose to view the task as a combination of text-image retrieval and standard image search. Specifically we calculate candidate images’ similarity score with similarity within the triplet. This method allows fine-grained modelling which takes account of the relevance between three pairs within the triplet, and extensive experiments show our method achieves state-of-the-art results on the FashionIQ dataset.\",\"PeriodicalId\":374660,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS57298.2022.10016349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS57298.2022.10016349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
InterCLIP: Adapting CLIP To Interactive Image Retrieval with Triplet Similarity
Interactive image retrieval is such task setting where a multi-modal query (reference image, feedback text) is provided, and the goal is to retrieve a target image which satisfies the changes described in feedback text based on the reference image. It offers a great promise for better user experience in a variety of fields such as e-commerce where the user can address their need with natural language and find the desired item iteratively. With the rising of Vision-Language Pre-trained(VLP) models, it has become a de facto to transfer rich knowledge learned from large-scale real-world data to downstream tasks. In this work, we propose a novel method called InterCLIP, which adapt the matching oriented VLP model CLIP, to the task. To further harness the power of CLIP, we propose to view the task as a combination of text-image retrieval and standard image search. Specifically we calculate candidate images’ similarity score with similarity within the triplet. This method allows fine-grained modelling which takes account of the relevance between three pairs within the triplet, and extensive experiments show our method achieves state-of-the-art results on the FashionIQ dataset.