{"title":"氧化锌纳米线传感器的器件合成拓扑","authors":"Bruce C. Kim, Anurag Gupta","doi":"10.1109/NANO.2017.8117466","DOIUrl":null,"url":null,"abstract":"This paper describes two unique device topologies: single ZnO nanowire and array ZnO nanowire-based devices. Two device topologies have been fabricated and compared for their sensing performance. The single nanowire device has been fabricated through focused ion beam and e-beam lithography techniques while the SEM and EDAX analysis have been used to characterize the device. The IV characteristics of the ZnO nanowire-based array devices have been measured through a semiconductor parameter analyzer.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device synthesis topology for zinc oxide nanowire sensors\",\"authors\":\"Bruce C. Kim, Anurag Gupta\",\"doi\":\"10.1109/NANO.2017.8117466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes two unique device topologies: single ZnO nanowire and array ZnO nanowire-based devices. Two device topologies have been fabricated and compared for their sensing performance. The single nanowire device has been fabricated through focused ion beam and e-beam lithography techniques while the SEM and EDAX analysis have been used to characterize the device. The IV characteristics of the ZnO nanowire-based array devices have been measured through a semiconductor parameter analyzer.\",\"PeriodicalId\":292399,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2017.8117466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Device synthesis topology for zinc oxide nanowire sensors
This paper describes two unique device topologies: single ZnO nanowire and array ZnO nanowire-based devices. Two device topologies have been fabricated and compared for their sensing performance. The single nanowire device has been fabricated through focused ion beam and e-beam lithography techniques while the SEM and EDAX analysis have been used to characterize the device. The IV characteristics of the ZnO nanowire-based array devices have been measured through a semiconductor parameter analyzer.