多排序模态逻辑的fisher - ladner闭包及其在操作语义上的应用

Natalia Moanga
{"title":"多排序模态逻辑的fisher - ladner闭包及其在操作语义上的应用","authors":"Natalia Moanga","doi":"10.1109/SYNASC51798.2020.00022","DOIUrl":null,"url":null,"abstract":"In prior work we have developed a many-sorted polyadic modal logic. Progressively adding different operations and binders, we expressed operational semantics, thus enabling us to certify execution. In this paper we prove standard completeness for a many-sorted hybrid modal logic with satisfaction operators and PDL-inspired axioms. In order to do this, we define the Fischer-Ladner closure for our particular system and we prove a variant of the small model property.","PeriodicalId":278104,"journal":{"name":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fischer-Ladner Closure for Many-Sorted Modal Logic with Application for Operational Semantics\",\"authors\":\"Natalia Moanga\",\"doi\":\"10.1109/SYNASC51798.2020.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In prior work we have developed a many-sorted polyadic modal logic. Progressively adding different operations and binders, we expressed operational semantics, thus enabling us to certify execution. In this paper we prove standard completeness for a many-sorted hybrid modal logic with satisfaction operators and PDL-inspired axioms. In order to do this, we define the Fischer-Ladner closure for our particular system and we prove a variant of the small model property.\",\"PeriodicalId\":278104,\"journal\":{\"name\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC51798.2020.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC51798.2020.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在以前的工作中,我们已经开发了一个多分类的多进模态逻辑。逐步添加不同的操作和绑定,我们表达了操作语义,从而使我们能够验证执行。本文证明了一类具有满足算子和pdl启发公理的多排序混合模态逻辑的标准完备性。为了做到这一点,我们定义了特定系统的fisher - ladner闭包,并证明了小模型性质的一个变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fischer-Ladner Closure for Many-Sorted Modal Logic with Application for Operational Semantics
In prior work we have developed a many-sorted polyadic modal logic. Progressively adding different operations and binders, we expressed operational semantics, thus enabling us to certify execution. In this paper we prove standard completeness for a many-sorted hybrid modal logic with satisfaction operators and PDL-inspired axioms. In order to do this, we define the Fischer-Ladner closure for our particular system and we prove a variant of the small model property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信