集成低压低功耗单片CMOS电荷泵的设计与优化

Ling Su, D. Ma
{"title":"集成低压低功耗单片CMOS电荷泵的设计与优化","authors":"Ling Su, D. Ma","doi":"10.1109/SPEEDHAM.2008.4581247","DOIUrl":null,"url":null,"abstract":"Driven by the proliferation of implantable and self-powered electronic devices, low-voltage, low-power, high-efficiency DC-DC power converters are on high demands. This paper first reviews the state-of-the-arts charge pumps, with focus on power loss minimization, power stage architectures and control signaling. A new four-phase complimentary charge pump is then proposed. By employing the techniques of minimizing the reversion loss and conduction loss and interleaving the power stage sub-cells, the design achieves high efficiency and low ripple voltages without compromising fabrication cost. A sub-threshold clock generator is employed to further reduce the power loss in the controller. The charge pump was designed with IBM 180 nm CMOS process with fully on-chip pumping capacitors. HSPICE simulations show that the charge pump maintains the efficiency above 90% within up to 5 mW power range, with the maximum efficiency of 92.01%. The ripple voltage is also much improved in comparison with its counterparts.","PeriodicalId":345557,"journal":{"name":"2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Design and optimization of integrated low-voltage low-power monolithic CMOS charge pumps\",\"authors\":\"Ling Su, D. Ma\",\"doi\":\"10.1109/SPEEDHAM.2008.4581247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by the proliferation of implantable and self-powered electronic devices, low-voltage, low-power, high-efficiency DC-DC power converters are on high demands. This paper first reviews the state-of-the-arts charge pumps, with focus on power loss minimization, power stage architectures and control signaling. A new four-phase complimentary charge pump is then proposed. By employing the techniques of minimizing the reversion loss and conduction loss and interleaving the power stage sub-cells, the design achieves high efficiency and low ripple voltages without compromising fabrication cost. A sub-threshold clock generator is employed to further reduce the power loss in the controller. The charge pump was designed with IBM 180 nm CMOS process with fully on-chip pumping capacitors. HSPICE simulations show that the charge pump maintains the efficiency above 90% within up to 5 mW power range, with the maximum efficiency of 92.01%. The ripple voltage is also much improved in comparison with its counterparts.\",\"PeriodicalId\":345557,\"journal\":{\"name\":\"2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEEDHAM.2008.4581247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEEDHAM.2008.4581247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

随着可植入和自供电电子设备的普及,对低压、低功耗、高效率的DC-DC电源转换器提出了很高的要求。本文首先回顾了最先进的电荷泵,重点是功率损失最小化,功率级架构和控制信号。然后提出了一种新的四相互补电荷泵。该设计通过采用最小化反转损耗和传导损耗以及功率级子电池交错的技术,在不影响制造成本的情况下实现了高效率和低纹波电压。采用亚阈值时钟发生器进一步降低了控制器的功率损耗。电荷泵采用IBM 180纳米CMOS工艺设计,采用全片上泵浦电容器。HSPICE仿真结果表明,在5 mW功率范围内,电荷泵的效率保持在90%以上,最高效率为92.01%。纹波电压与同类电压相比也有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and optimization of integrated low-voltage low-power monolithic CMOS charge pumps
Driven by the proliferation of implantable and self-powered electronic devices, low-voltage, low-power, high-efficiency DC-DC power converters are on high demands. This paper first reviews the state-of-the-arts charge pumps, with focus on power loss minimization, power stage architectures and control signaling. A new four-phase complimentary charge pump is then proposed. By employing the techniques of minimizing the reversion loss and conduction loss and interleaving the power stage sub-cells, the design achieves high efficiency and low ripple voltages without compromising fabrication cost. A sub-threshold clock generator is employed to further reduce the power loss in the controller. The charge pump was designed with IBM 180 nm CMOS process with fully on-chip pumping capacitors. HSPICE simulations show that the charge pump maintains the efficiency above 90% within up to 5 mW power range, with the maximum efficiency of 92.01%. The ripple voltage is also much improved in comparison with its counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信