多目标优化的竞争-合作协同进化范式

C. Goh, K. Tan, A. Tay
{"title":"多目标优化的竞争-合作协同进化范式","authors":"C. Goh, K. Tan, A. Tay","doi":"10.1109/ISIC.2007.4450894","DOIUrl":null,"url":null,"abstract":"This paper proposes a new coevolutionary paradigm that hybridizes competitive and cooperative mechanisms observed in nature to solve multi-objective optimization problems. The main idea of cooperationist-competitive coevolution is to allow the decomposition process of the optimization problem to adapt and emerge rather than being hand designed and fixed at the start of the evolutionary optimization process. In particular, each species subpopulation will compete to represent a particular subcomponent of the multi-objective problem while the eventual winners will cooperate to evolve the better solutions. The effectiveness of the competitive-cooperation coevolutionary algorithm (COEA) is validated against various multi-objective evolutionary algorithms upon three benchmark problems characterized by different difficulties in local optimality, non-convexity and high-dimensionality.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Competitive-Cooperation Coevolutionary Paradigm for Multi-objective Optimization\",\"authors\":\"C. Goh, K. Tan, A. Tay\",\"doi\":\"10.1109/ISIC.2007.4450894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new coevolutionary paradigm that hybridizes competitive and cooperative mechanisms observed in nature to solve multi-objective optimization problems. The main idea of cooperationist-competitive coevolution is to allow the decomposition process of the optimization problem to adapt and emerge rather than being hand designed and fixed at the start of the evolutionary optimization process. In particular, each species subpopulation will compete to represent a particular subcomponent of the multi-objective problem while the eventual winners will cooperate to evolve the better solutions. The effectiveness of the competitive-cooperation coevolutionary algorithm (COEA) is validated against various multi-objective evolutionary algorithms upon three benchmark problems characterized by different difficulties in local optimality, non-convexity and high-dimensionality.\",\"PeriodicalId\":184867,\"journal\":{\"name\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2007.4450894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的协同进化范式,将自然界观察到的竞争与合作机制结合起来解决多目标优化问题。合作-竞争协同进化的主要思想是允许优化问题的分解过程适应和出现,而不是在进化优化过程的开始就手工设计和固定。特别是,每个物种亚种群将竞争代表多目标问题的特定子组件,而最终的赢家将合作发展更好的解决方案。在局部最优性、非凸性和高维性不同难度的三个基准问题上,对比各种多目标进化算法,验证了竞争-合作协同进化算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Competitive-Cooperation Coevolutionary Paradigm for Multi-objective Optimization
This paper proposes a new coevolutionary paradigm that hybridizes competitive and cooperative mechanisms observed in nature to solve multi-objective optimization problems. The main idea of cooperationist-competitive coevolution is to allow the decomposition process of the optimization problem to adapt and emerge rather than being hand designed and fixed at the start of the evolutionary optimization process. In particular, each species subpopulation will compete to represent a particular subcomponent of the multi-objective problem while the eventual winners will cooperate to evolve the better solutions. The effectiveness of the competitive-cooperation coevolutionary algorithm (COEA) is validated against various multi-objective evolutionary algorithms upon three benchmark problems characterized by different difficulties in local optimality, non-convexity and high-dimensionality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信