{"title":"面向下一代移动网络的多业务多址方案","authors":"N. Ksairi, S. Tomasin, M. Debbah","doi":"10.1109/EuCNC.2016.7561062","DOIUrl":null,"url":null,"abstract":"One of the key requirements for fifth-generation (5G) cellular networks is their ability to handle densely connected devices with different quality of service (QoS) requirements. In this article, we present multi-service oriented multiple access (MOMA), an integrated access scheme for massive connections with diverse QoS profiles and/or traffic patterns originating from both handheld devices and machine-to-machine (M2M) transmissions. MOMA is based on a) establishing separate classes of users based on relevant criteria that go beyond the simple handheld/M2M split, b) class dependent hierarchical spreading of the data signal and c) a mix of multiuser and single-user detection schemes at the receiver. Practical implementations of the MOMA principle are provided for base stations (BSs) that are equipped with a large number of antenna elements. Finally, it is shown that such a massive-multiple-input-multiple-output (MIMO) scenario enables the achievement of all the benefits of MOMA even with a simple receiver structure that allows to concentrate the receiver complexity where effectively needed.","PeriodicalId":416277,"journal":{"name":"2016 European Conference on Networks and Communications (EuCNC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A multi-service oriented multiple-access scheme for next-generation mobile networks\",\"authors\":\"N. Ksairi, S. Tomasin, M. Debbah\",\"doi\":\"10.1109/EuCNC.2016.7561062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the key requirements for fifth-generation (5G) cellular networks is their ability to handle densely connected devices with different quality of service (QoS) requirements. In this article, we present multi-service oriented multiple access (MOMA), an integrated access scheme for massive connections with diverse QoS profiles and/or traffic patterns originating from both handheld devices and machine-to-machine (M2M) transmissions. MOMA is based on a) establishing separate classes of users based on relevant criteria that go beyond the simple handheld/M2M split, b) class dependent hierarchical spreading of the data signal and c) a mix of multiuser and single-user detection schemes at the receiver. Practical implementations of the MOMA principle are provided for base stations (BSs) that are equipped with a large number of antenna elements. Finally, it is shown that such a massive-multiple-input-multiple-output (MIMO) scenario enables the achievement of all the benefits of MOMA even with a simple receiver structure that allows to concentrate the receiver complexity where effectively needed.\",\"PeriodicalId\":416277,\"journal\":{\"name\":\"2016 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2016.7561062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2016.7561062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-service oriented multiple-access scheme for next-generation mobile networks
One of the key requirements for fifth-generation (5G) cellular networks is their ability to handle densely connected devices with different quality of service (QoS) requirements. In this article, we present multi-service oriented multiple access (MOMA), an integrated access scheme for massive connections with diverse QoS profiles and/or traffic patterns originating from both handheld devices and machine-to-machine (M2M) transmissions. MOMA is based on a) establishing separate classes of users based on relevant criteria that go beyond the simple handheld/M2M split, b) class dependent hierarchical spreading of the data signal and c) a mix of multiuser and single-user detection schemes at the receiver. Practical implementations of the MOMA principle are provided for base stations (BSs) that are equipped with a large number of antenna elements. Finally, it is shown that such a massive-multiple-input-multiple-output (MIMO) scenario enables the achievement of all the benefits of MOMA even with a simple receiver structure that allows to concentrate the receiver complexity where effectively needed.