氨/氢燃烧对镍基高温合金H渗透和脆化的影响

M. Kovaleva, D. Dziedzic, S. Mashruk, S. Evans, A. Valera-Medina, E. Galindo-Nava
{"title":"氨/氢燃烧对镍基高温合金H渗透和脆化的影响","authors":"M. Kovaleva, D. Dziedzic, S. Mashruk, S. Evans, A. Valera-Medina, E. Galindo-Nava","doi":"10.1115/gt2022-82239","DOIUrl":null,"url":null,"abstract":"\n Recent studies exploring ammonia as a green hydrogen energy carrier have established its suitability for a variety of combustion technologies including gas turbines, furnaces, and internal combustion engines. Of significant interest are ammonia/hydrogen blends, which possess combustion benefits over pure ammonia, including an extended stability range and higher laminar burning velocity. Despite extensive research characterising the flame properties of these blends, very few studies explore the suitability of existing materials for the manufacture of ammonia/hydrogen combustors. The present study evaluates the impact of ammonia/hydrogen flame chemistry on the H permeation and possible loss of ductility of nickel-superalloys through exposing the samples to pure methane and ammonia/hydrogen flames at atmospheric pressure for a 5-hour period. The effect of the two flame compositions on the materials are compared through thermal desorption analysis (TDA) and room temperature tensile testing. The results showed that exposure to an ammonia/hydrogen combustion environment led to hydrogen being absorbed by the nickel superalloys but a possible variation in ductility is influenced by the combustion conditions. Furthermore, the formation of an oxide layer was shown to likely impact the hydrogen absorption rate of the materials. This work shows that ammonia/hydrogen flame chemistry on combustor materials should not be ignored and warrants further studies on material’s mechanical and environmental stability controlled by nitrogen and hydrogen species permeating at industrially relevant conditions.","PeriodicalId":301910,"journal":{"name":"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Microturbines, Turbochargers, and Small Turbomachines; Oil & Gas Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Evaluation of Ammonia/Hydrogen Combustion on the H Permeation and Embrittlement of Nickel-Base Superalloys\",\"authors\":\"M. Kovaleva, D. Dziedzic, S. Mashruk, S. Evans, A. Valera-Medina, E. Galindo-Nava\",\"doi\":\"10.1115/gt2022-82239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recent studies exploring ammonia as a green hydrogen energy carrier have established its suitability for a variety of combustion technologies including gas turbines, furnaces, and internal combustion engines. Of significant interest are ammonia/hydrogen blends, which possess combustion benefits over pure ammonia, including an extended stability range and higher laminar burning velocity. Despite extensive research characterising the flame properties of these blends, very few studies explore the suitability of existing materials for the manufacture of ammonia/hydrogen combustors. The present study evaluates the impact of ammonia/hydrogen flame chemistry on the H permeation and possible loss of ductility of nickel-superalloys through exposing the samples to pure methane and ammonia/hydrogen flames at atmospheric pressure for a 5-hour period. The effect of the two flame compositions on the materials are compared through thermal desorption analysis (TDA) and room temperature tensile testing. The results showed that exposure to an ammonia/hydrogen combustion environment led to hydrogen being absorbed by the nickel superalloys but a possible variation in ductility is influenced by the combustion conditions. Furthermore, the formation of an oxide layer was shown to likely impact the hydrogen absorption rate of the materials. This work shows that ammonia/hydrogen flame chemistry on combustor materials should not be ignored and warrants further studies on material’s mechanical and environmental stability controlled by nitrogen and hydrogen species permeating at industrially relevant conditions.\",\"PeriodicalId\":301910,\"journal\":{\"name\":\"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Microturbines, Turbochargers, and Small Turbomachines; Oil & Gas Applications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Microturbines, Turbochargers, and Small Turbomachines; Oil & Gas Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2022-82239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Microturbines, Turbochargers, and Small Turbomachines; Oil & Gas Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-82239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的研究探索了氨作为一种绿色氢能源载体,已经确定了它适用于各种燃烧技术,包括燃气轮机、熔炉和内燃机。值得关注的是氨/氢混合物,它比纯氨具有燃烧优势,包括更大的稳定范围和更高的层流燃烧速度。尽管对这些混合物的火焰特性进行了广泛的研究,但很少有研究探索现有材料用于制造氨/氢燃烧器的适用性。本研究通过在常压下将样品暴露于纯甲烷和氨/氢火焰中5小时,评估氨/氢火焰化学对镍高温合金H渗透和可能的延性损失的影响。通过热解吸分析(TDA)和室温拉伸试验,比较了两种火焰成分对材料的影响。结果表明,在氨/氢燃烧环境下,镍高温合金会吸收氢,但其延展性的变化可能受到燃烧条件的影响。此外,氧化层的形成可能会影响材料的吸氢率。这项工作表明,氨/氢火焰在燃烧器材料上的化学作用不容忽视,值得进一步研究在工业相关条件下氮和氢渗透控制材料的机械和环境稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Evaluation of Ammonia/Hydrogen Combustion on the H Permeation and Embrittlement of Nickel-Base Superalloys
Recent studies exploring ammonia as a green hydrogen energy carrier have established its suitability for a variety of combustion technologies including gas turbines, furnaces, and internal combustion engines. Of significant interest are ammonia/hydrogen blends, which possess combustion benefits over pure ammonia, including an extended stability range and higher laminar burning velocity. Despite extensive research characterising the flame properties of these blends, very few studies explore the suitability of existing materials for the manufacture of ammonia/hydrogen combustors. The present study evaluates the impact of ammonia/hydrogen flame chemistry on the H permeation and possible loss of ductility of nickel-superalloys through exposing the samples to pure methane and ammonia/hydrogen flames at atmospheric pressure for a 5-hour period. The effect of the two flame compositions on the materials are compared through thermal desorption analysis (TDA) and room temperature tensile testing. The results showed that exposure to an ammonia/hydrogen combustion environment led to hydrogen being absorbed by the nickel superalloys but a possible variation in ductility is influenced by the combustion conditions. Furthermore, the formation of an oxide layer was shown to likely impact the hydrogen absorption rate of the materials. This work shows that ammonia/hydrogen flame chemistry on combustor materials should not be ignored and warrants further studies on material’s mechanical and environmental stability controlled by nitrogen and hydrogen species permeating at industrially relevant conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信