档案会计研究中的异常值与稳健推断

Joachim Gassen, David Veenman
{"title":"档案会计研究中的异常值与稳健推断","authors":"Joachim Gassen, David Veenman","doi":"10.2139/ssrn.3880942","DOIUrl":null,"url":null,"abstract":"We study the nature and consequences of outliers in archival research, as well as the merits and limitations of robust regression estimators in identifying and downweighting their influence. Using simulated and actual data, we demonstrate how outliers can arise non-randomly from the data-generating process, research design choices such as scaling, and model misspecification. We find that robust regression estimators generate more precise estimates than OLS in common archival data. At the same time, these estimators can bias inferences due to their downweighting of substantial and nonrandom proportions of the data. We further demonstrate that model misspecification (e.g., a failure to account for nonlinear relations) can induce biases in robust regression estimates that are more severe than with OLS. Based on our analyses, we recommend researchers to carefully evaluate the causes and consequences of the nonrandom nature of outliers in their samples, to implement and interpret robust regression estimators with care, and to evaluate and disclose the sensitivity of robust estimators to key design choices.","PeriodicalId":357263,"journal":{"name":"Managerial Accounting eJournal","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Outliers and Robust Inference in Archival Accounting Research\",\"authors\":\"Joachim Gassen, David Veenman\",\"doi\":\"10.2139/ssrn.3880942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the nature and consequences of outliers in archival research, as well as the merits and limitations of robust regression estimators in identifying and downweighting their influence. Using simulated and actual data, we demonstrate how outliers can arise non-randomly from the data-generating process, research design choices such as scaling, and model misspecification. We find that robust regression estimators generate more precise estimates than OLS in common archival data. At the same time, these estimators can bias inferences due to their downweighting of substantial and nonrandom proportions of the data. We further demonstrate that model misspecification (e.g., a failure to account for nonlinear relations) can induce biases in robust regression estimates that are more severe than with OLS. Based on our analyses, we recommend researchers to carefully evaluate the causes and consequences of the nonrandom nature of outliers in their samples, to implement and interpret robust regression estimators with care, and to evaluate and disclose the sensitivity of robust estimators to key design choices.\",\"PeriodicalId\":357263,\"journal\":{\"name\":\"Managerial Accounting eJournal\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Managerial Accounting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3880942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Managerial Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3880942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了档案研究中异常值的性质和后果,以及鲁棒回归估计器在识别和降低其影响方面的优点和局限性。使用模拟和实际数据,我们展示了异常值如何从数据生成过程、研究设计选择(如缩放)和模型错误规范中非随机产生。我们发现鲁棒回归估计器在普通档案数据中产生比OLS更精确的估计。同时,由于这些估计器对数据的大量和非随机比例进行了加权,因此可能会使推断产生偏差。我们进一步证明,模型规格错误(例如,未能考虑非线性关系)会导致鲁棒回归估计中的偏差,这种偏差比OLS更严重。基于我们的分析,我们建议研究人员仔细评估样本中异常值的非随机性的原因和后果,谨慎地实施和解释稳健回归估计器,并评估和揭示稳健估计器对关键设计选择的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outliers and Robust Inference in Archival Accounting Research
We study the nature and consequences of outliers in archival research, as well as the merits and limitations of robust regression estimators in identifying and downweighting their influence. Using simulated and actual data, we demonstrate how outliers can arise non-randomly from the data-generating process, research design choices such as scaling, and model misspecification. We find that robust regression estimators generate more precise estimates than OLS in common archival data. At the same time, these estimators can bias inferences due to their downweighting of substantial and nonrandom proportions of the data. We further demonstrate that model misspecification (e.g., a failure to account for nonlinear relations) can induce biases in robust regression estimates that are more severe than with OLS. Based on our analyses, we recommend researchers to carefully evaluate the causes and consequences of the nonrandom nature of outliers in their samples, to implement and interpret robust regression estimators with care, and to evaluate and disclose the sensitivity of robust estimators to key design choices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信