基于可见和红外图像SURF特征分层码本的行人识别

B. Besbes, A. Rogozan, A. Bensrhair
{"title":"基于可见和红外图像SURF特征分层码本的行人识别","authors":"B. Besbes, A. Rogozan, A. Bensrhair","doi":"10.1109/IVS.2010.5547965","DOIUrl":null,"url":null,"abstract":"One of the main challenges in Intelligent Vehicle is recognition of road obstacles. Our goal is to design a real-time, precise and robust pedestrian recognition system. We choose to use Speeded Up Robust Features (SURF) and a Support Vector Machine (SVM) classifier in order to perform the recognition task. Our main contribution is a method for fast computation of discriminative features for pedestrian recognition. Fast features extraction is assured by using a hierarchical codebook of scale and rotation-invariant SURF features. We evaluate our approach for pedestrian recognition in a set of images where people occur at different scales and in difficult recognition situations. The system shows good performance in visible and especially in infrared images. Besides, experimental results show that the hierarchical structure presents a major interest not only for maintaining a reasonable feature extraction time, but also for improving classification results.","PeriodicalId":123266,"journal":{"name":"2010 IEEE Intelligent Vehicles Symposium","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Pedestrian recognition based on hierarchical codebook of SURF features in visible and infrared images\",\"authors\":\"B. Besbes, A. Rogozan, A. Bensrhair\",\"doi\":\"10.1109/IVS.2010.5547965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges in Intelligent Vehicle is recognition of road obstacles. Our goal is to design a real-time, precise and robust pedestrian recognition system. We choose to use Speeded Up Robust Features (SURF) and a Support Vector Machine (SVM) classifier in order to perform the recognition task. Our main contribution is a method for fast computation of discriminative features for pedestrian recognition. Fast features extraction is assured by using a hierarchical codebook of scale and rotation-invariant SURF features. We evaluate our approach for pedestrian recognition in a set of images where people occur at different scales and in difficult recognition situations. The system shows good performance in visible and especially in infrared images. Besides, experimental results show that the hierarchical structure presents a major interest not only for maintaining a reasonable feature extraction time, but also for improving classification results.\",\"PeriodicalId\":123266,\"journal\":{\"name\":\"2010 IEEE Intelligent Vehicles Symposium\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2010.5547965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2010.5547965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

道路障碍物识别是智能汽车面临的主要挑战之一。我们的目标是设计一个实时、精确、鲁棒的行人识别系统。我们选择使用加速鲁棒特征(SURF)和支持向量机(SVM)分类器来执行识别任务。我们的主要贡献是一种用于行人识别的判别特征的快速计算方法。通过使用规模不变和旋转不变SURF特征的分层码本,保证了特征的快速提取。我们在一组图像中评估我们的行人识别方法,其中人们出现在不同的尺度和困难的识别情况下。该系统在可见光和红外图像中表现出良好的性能。此外,实验结果表明,分层结构不仅对保持合理的特征提取时间,而且对提高分类结果具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian recognition based on hierarchical codebook of SURF features in visible and infrared images
One of the main challenges in Intelligent Vehicle is recognition of road obstacles. Our goal is to design a real-time, precise and robust pedestrian recognition system. We choose to use Speeded Up Robust Features (SURF) and a Support Vector Machine (SVM) classifier in order to perform the recognition task. Our main contribution is a method for fast computation of discriminative features for pedestrian recognition. Fast features extraction is assured by using a hierarchical codebook of scale and rotation-invariant SURF features. We evaluate our approach for pedestrian recognition in a set of images where people occur at different scales and in difficult recognition situations. The system shows good performance in visible and especially in infrared images. Besides, experimental results show that the hierarchical structure presents a major interest not only for maintaining a reasonable feature extraction time, but also for improving classification results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信