基于量子遗传算法的改进粒子群算法在水下路径规划中的应用

Fei Yu, Yang Liu
{"title":"基于量子遗传算法的改进粒子群算法在水下路径规划中的应用","authors":"Fei Yu, Yang Liu","doi":"10.1109/ISA.2011.5873381","DOIUrl":null,"url":null,"abstract":"An improved particle swarm optimization algorithm (PSO) combined with quantum genetic algorithm is proposed, to solve the problems that the PSO is difficult to converge for benchmark complex problems and it's parameters are hard to define. The new algorithm is used for submersible path planning and simulation on some standard test functions. The results show that the improved is superior to the standard PSO in optimization ability and the convergence rate, and it can find the optimal path faster.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Application of an Improved PSO Based on the Quantum Genetic Algorithm in the Submersible Path-Planning\",\"authors\":\"Fei Yu, Yang Liu\",\"doi\":\"10.1109/ISA.2011.5873381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved particle swarm optimization algorithm (PSO) combined with quantum genetic algorithm is proposed, to solve the problems that the PSO is difficult to converge for benchmark complex problems and it's parameters are hard to define. The new algorithm is used for submersible path planning and simulation on some standard test functions. The results show that the improved is superior to the standard PSO in optimization ability and the convergence rate, and it can find the optimal path faster.\",\"PeriodicalId\":128163,\"journal\":{\"name\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2011.5873381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对粒子群优化算法对基准复杂问题难以收敛和参数难以定义的问题,提出了一种与量子遗传算法相结合的改进粒子群优化算法。将该算法应用于潜水路径规划,并对一些标准测试函数进行了仿真。结果表明,改进后的粒子群算法在优化能力和收敛速度上都优于标准粒子群算法,能更快地找到最优路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Application of an Improved PSO Based on the Quantum Genetic Algorithm in the Submersible Path-Planning
An improved particle swarm optimization algorithm (PSO) combined with quantum genetic algorithm is proposed, to solve the problems that the PSO is difficult to converge for benchmark complex problems and it's parameters are hard to define. The new algorithm is used for submersible path planning and simulation on some standard test functions. The results show that the improved is superior to the standard PSO in optimization ability and the convergence rate, and it can find the optimal path faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信