天线阵旁瓣抑制的粒子群算法

L. Xue, Jiao Zhang, Yusheng Pan, Yufeng Liu
{"title":"天线阵旁瓣抑制的粒子群算法","authors":"L. Xue, Jiao Zhang, Yusheng Pan, Yufeng Liu","doi":"10.1109/CSQRWC.2019.8799242","DOIUrl":null,"url":null,"abstract":"This paper presents particle swarm optimization (PSO) algorithm to optimize the position of sparse arrays. Under the condition that the aperture is 34 wavelength and the number of array elements is 35, we compared the optimization results of the side lobe level of the array by genetic algorithm (GA) with that by PSO. The simulation results show that PSO algorithm has better effect than GA.","PeriodicalId":254491,"journal":{"name":"2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle Swarm Optimization for Side Lobe Reduction of Antenna Array\",\"authors\":\"L. Xue, Jiao Zhang, Yusheng Pan, Yufeng Liu\",\"doi\":\"10.1109/CSQRWC.2019.8799242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents particle swarm optimization (PSO) algorithm to optimize the position of sparse arrays. Under the condition that the aperture is 34 wavelength and the number of array elements is 35, we compared the optimization results of the side lobe level of the array by genetic algorithm (GA) with that by PSO. The simulation results show that PSO algorithm has better effect than GA.\",\"PeriodicalId\":254491,\"journal\":{\"name\":\"2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSQRWC.2019.8799242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSQRWC.2019.8799242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于粒子群算法的稀疏阵列位置优化算法。在孔径为34波长、阵元数为35的条件下,比较了遗传算法(GA)和粒子群算法(PSO)对阵旁瓣电平的优化结果。仿真结果表明,粒子群算法优于遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization for Side Lobe Reduction of Antenna Array
This paper presents particle swarm optimization (PSO) algorithm to optimize the position of sparse arrays. Under the condition that the aperture is 34 wavelength and the number of array elements is 35, we compared the optimization results of the side lobe level of the array by genetic algorithm (GA) with that by PSO. The simulation results show that PSO algorithm has better effect than GA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信