基于广义直方图阈值分割的CT三维肺分割

Marcelo A. F. Toledo, M. Rebelo, J. Krieger, M. A. Gutierrez
{"title":"基于广义直方图阈值分割的CT三维肺分割","authors":"Marcelo A. F. Toledo, M. Rebelo, J. Krieger, M. A. Gutierrez","doi":"10.5753/sbcas.2021.16054","DOIUrl":null,"url":null,"abstract":"Computerized Tomography is very important for lung disease diagnostics, including computer assisted methods. Lung segmentation is usually a first step in further sophisticated methods of diagnosis. If in one hand, deep learning methods have state-of-the-art performance, they aren't as simple to apply compared to classical methods, sometimes requiring extra data and training. We designed a method specific for lung segmentation based on histogram thresholding. We observed that, in our proposed method, by changing from Otsu to the more recently developed GHT we got a significant improvement in segmentation, jumping from 77% to 91% average dice (from 90% to 95% median dice, respectively), approaching deep learning methods (UNet) results (94% average and 97% median dice). Even though our proposed method runs on CPU, it's still 2.6 times faster than UNet on GPU. Moreover, our proposed method is off-the-shelf, requiring no training or parameter calibration, being suitable as pre-processing for more sophisticated methods that aim specific diagnoses.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-the-shelf 3D Lung Segmentation in CT using Generalized Histogram Thresholding\",\"authors\":\"Marcelo A. F. Toledo, M. Rebelo, J. Krieger, M. A. Gutierrez\",\"doi\":\"10.5753/sbcas.2021.16054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computerized Tomography is very important for lung disease diagnostics, including computer assisted methods. Lung segmentation is usually a first step in further sophisticated methods of diagnosis. If in one hand, deep learning methods have state-of-the-art performance, they aren't as simple to apply compared to classical methods, sometimes requiring extra data and training. We designed a method specific for lung segmentation based on histogram thresholding. We observed that, in our proposed method, by changing from Otsu to the more recently developed GHT we got a significant improvement in segmentation, jumping from 77% to 91% average dice (from 90% to 95% median dice, respectively), approaching deep learning methods (UNet) results (94% average and 97% median dice). Even though our proposed method runs on CPU, it's still 2.6 times faster than UNet on GPU. Moreover, our proposed method is off-the-shelf, requiring no training or parameter calibration, being suitable as pre-processing for more sophisticated methods that aim specific diagnoses.\",\"PeriodicalId\":413867,\"journal\":{\"name\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2021.16054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机断层扫描对肺部疾病的诊断非常重要,包括计算机辅助方法。肺分割通常是进一步复杂诊断方法的第一步。一方面,深度学习方法具有最先进的性能,但与经典方法相比,它们的应用并不那么简单,有时需要额外的数据和训练。我们设计了一种基于直方图阈值的肺分割方法。我们观察到,在我们提出的方法中,通过将Otsu改为最近开发的GHT,我们在分割方面得到了显着改善,平均骰子从77%跃升至91%(分别从90%跃升至95%中位数骰子),接近深度学习方法(UNet)的结果(94%平均骰子和97%中位数骰子)。即使我们提出的方法在CPU上运行,它仍然比GPU上的UNet快2.6倍。此外,我们提出的方法是现成的,不需要训练或参数校准,适用于针对特定诊断的更复杂方法的预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Off-the-shelf 3D Lung Segmentation in CT using Generalized Histogram Thresholding
Computerized Tomography is very important for lung disease diagnostics, including computer assisted methods. Lung segmentation is usually a first step in further sophisticated methods of diagnosis. If in one hand, deep learning methods have state-of-the-art performance, they aren't as simple to apply compared to classical methods, sometimes requiring extra data and training. We designed a method specific for lung segmentation based on histogram thresholding. We observed that, in our proposed method, by changing from Otsu to the more recently developed GHT we got a significant improvement in segmentation, jumping from 77% to 91% average dice (from 90% to 95% median dice, respectively), approaching deep learning methods (UNet) results (94% average and 97% median dice). Even though our proposed method runs on CPU, it's still 2.6 times faster than UNet on GPU. Moreover, our proposed method is off-the-shelf, requiring no training or parameter calibration, being suitable as pre-processing for more sophisticated methods that aim specific diagnoses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信