基于概率有限状态机和模糊逻辑的机动识别

T. Hülnhagen, Ingo Dengler, A. Tamke, T. Dang, G. Breuel
{"title":"基于概率有限状态机和模糊逻辑的机动识别","authors":"T. Hülnhagen, Ingo Dengler, A. Tamke, T. Dang, G. Breuel","doi":"10.1109/IVS.2010.5548066","DOIUrl":null,"url":null,"abstract":"This paper presents a general approach for recognition of driving maneuvers in advanced driver assistance systems (ADAS). Such systems often rely on the identification of driving maneuvers (overtaking, left turn at intersections, etc.) to improve the prediction of potential collisions or to trigger appropriate support for the driver. The proposed maneuver recognition approach combines a fuzzy rule base to model basic maneuver elements and probabilistic finite-state machines to capture all possible sequences of basic elements that constitute a driving maneuver. The proposed method is specifically tailored to ADAS requirements because of its low computational complexity, its flexibility and its straight-forward design based on easily comprehensible logical rules. In addition, we propose a suitable training method to optimize the fuzzy rule base. Our approach is evaluated on the recognition of turn maneuvers. Experiments on real data from a test vehicle demonstrate the feasibility of the proposed method.","PeriodicalId":123266,"journal":{"name":"2010 IEEE Intelligent Vehicles Symposium","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"Maneuver recognition using probabilistic finite-state machines and fuzzy logic\",\"authors\":\"T. Hülnhagen, Ingo Dengler, A. Tamke, T. Dang, G. Breuel\",\"doi\":\"10.1109/IVS.2010.5548066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a general approach for recognition of driving maneuvers in advanced driver assistance systems (ADAS). Such systems often rely on the identification of driving maneuvers (overtaking, left turn at intersections, etc.) to improve the prediction of potential collisions or to trigger appropriate support for the driver. The proposed maneuver recognition approach combines a fuzzy rule base to model basic maneuver elements and probabilistic finite-state machines to capture all possible sequences of basic elements that constitute a driving maneuver. The proposed method is specifically tailored to ADAS requirements because of its low computational complexity, its flexibility and its straight-forward design based on easily comprehensible logical rules. In addition, we propose a suitable training method to optimize the fuzzy rule base. Our approach is evaluated on the recognition of turn maneuvers. Experiments on real data from a test vehicle demonstrate the feasibility of the proposed method.\",\"PeriodicalId\":123266,\"journal\":{\"name\":\"2010 IEEE Intelligent Vehicles Symposium\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2010.5548066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2010.5548066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

提出了一种用于高级驾驶辅助系统(ADAS)驾驶动作识别的通用方法。此类系统通常依赖于对驾驶动作(超车、十字路口左转等)的识别,以提高对潜在碰撞的预测或触发对驾驶员的适当支持。提出的机动识别方法结合模糊规则库对基本机动要素建模和概率有限状态机捕获构成驾驶机动的所有可能的基本要素序列。所提出的方法是专门针对ADAS的要求,因为它的计算复杂度低,灵活性和基于易于理解的逻辑规则的直接设计。此外,我们还提出了一种合适的训练方法来优化模糊规则库。我们的方法在转弯机动的识别上得到了评价。试验车辆的实际数据验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maneuver recognition using probabilistic finite-state machines and fuzzy logic
This paper presents a general approach for recognition of driving maneuvers in advanced driver assistance systems (ADAS). Such systems often rely on the identification of driving maneuvers (overtaking, left turn at intersections, etc.) to improve the prediction of potential collisions or to trigger appropriate support for the driver. The proposed maneuver recognition approach combines a fuzzy rule base to model basic maneuver elements and probabilistic finite-state machines to capture all possible sequences of basic elements that constitute a driving maneuver. The proposed method is specifically tailored to ADAS requirements because of its low computational complexity, its flexibility and its straight-forward design based on easily comprehensible logical rules. In addition, we propose a suitable training method to optimize the fuzzy rule base. Our approach is evaluated on the recognition of turn maneuvers. Experiments on real data from a test vehicle demonstrate the feasibility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信