C. Schulte-Braucks, S. Richter, L. Knoll, L. Selmi, Qing-Tai Zhao, S. Mantl
{"title":"改进gaa - nw - tfet模拟器件性能的实验证明","authors":"C. Schulte-Braucks, S. Richter, L. Knoll, L. Selmi, Qing-Tai Zhao, S. Mantl","doi":"10.1109/ESSDERC.2014.6948789","DOIUrl":null,"url":null,"abstract":"We present experimental data on analog device performance of p-type planar and gate all around (GAA) nanowire (NW) Tunnel-FETs (TFETs). 10 nm diameter GAA-NW-TFETs reach a maximum transconductance efficiency of 12.7V-1 which is close to values obtained from simulations. A significant improvement of the analog performance by enhancing the electrostatics from planar TFETs to GAA-NW-TFETs with diameter of 20 nm and 10 nm is demonstrated. A maximum transconductance of 122 μS/μm and on-current up to 23 μ A/μm at a gate overdrive of Vgt = Vd = -1 V were achieved for the GAA-NW-TFETs. Furthermore a good output current-saturation is observed leading to high intrinsic gain up to 217 which is even higher than in 20 nm FinFETs.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Experimental demonstration of improved analog device performance in GAA-NW-TFETs\",\"authors\":\"C. Schulte-Braucks, S. Richter, L. Knoll, L. Selmi, Qing-Tai Zhao, S. Mantl\",\"doi\":\"10.1109/ESSDERC.2014.6948789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present experimental data on analog device performance of p-type planar and gate all around (GAA) nanowire (NW) Tunnel-FETs (TFETs). 10 nm diameter GAA-NW-TFETs reach a maximum transconductance efficiency of 12.7V-1 which is close to values obtained from simulations. A significant improvement of the analog performance by enhancing the electrostatics from planar TFETs to GAA-NW-TFETs with diameter of 20 nm and 10 nm is demonstrated. A maximum transconductance of 122 μS/μm and on-current up to 23 μ A/μm at a gate overdrive of Vgt = Vd = -1 V were achieved for the GAA-NW-TFETs. Furthermore a good output current-saturation is observed leading to high intrinsic gain up to 217 which is even higher than in 20 nm FinFETs.\",\"PeriodicalId\":262652,\"journal\":{\"name\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2014.6948789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental demonstration of improved analog device performance in GAA-NW-TFETs
We present experimental data on analog device performance of p-type planar and gate all around (GAA) nanowire (NW) Tunnel-FETs (TFETs). 10 nm diameter GAA-NW-TFETs reach a maximum transconductance efficiency of 12.7V-1 which is close to values obtained from simulations. A significant improvement of the analog performance by enhancing the electrostatics from planar TFETs to GAA-NW-TFETs with diameter of 20 nm and 10 nm is demonstrated. A maximum transconductance of 122 μS/μm and on-current up to 23 μ A/μm at a gate overdrive of Vgt = Vd = -1 V were achieved for the GAA-NW-TFETs. Furthermore a good output current-saturation is observed leading to high intrinsic gain up to 217 which is even higher than in 20 nm FinFETs.