tessarine值神经网络的普遍逼近定理

R. Carniello, Wington L. Vital, M. E. Valle
{"title":"tessarine值神经网络的普遍逼近定理","authors":"R. Carniello, Wington L. Vital, M. E. Valle","doi":"10.5753/eniac.2021.18256","DOIUrl":null,"url":null,"abstract":"The universal approximation theorem ensures that any continuous real-valued function defined on a compact subset can be approximated with arbitrary precision by a single hidden layer neural network. In this paper, we show that the universal approximation theorem also holds for tessarine-valued neural networks. Precisely, any continuous tessarine-valued function can be approximated with arbitrary precision by a single hidden layer tessarine-valued neural network with split activation functions in the hidden layer. A simple numerical example, confirming the theoretical result and revealing the superior performance of a tessarine-valued neural network over a real-valued model for interpolating a vector-valued function, is presented in the paper.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Universal Approximation Theorem for Tessarine-Valued Neural Networks\",\"authors\":\"R. Carniello, Wington L. Vital, M. E. Valle\",\"doi\":\"10.5753/eniac.2021.18256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The universal approximation theorem ensures that any continuous real-valued function defined on a compact subset can be approximated with arbitrary precision by a single hidden layer neural network. In this paper, we show that the universal approximation theorem also holds for tessarine-valued neural networks. Precisely, any continuous tessarine-valued function can be approximated with arbitrary precision by a single hidden layer tessarine-valued neural network with split activation functions in the hidden layer. A simple numerical example, confirming the theoretical result and revealing the superior performance of a tessarine-valued neural network over a real-valued model for interpolating a vector-valued function, is presented in the paper.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通用逼近定理保证了定义在紧子集上的任何连续实值函数都可以用单个隐层神经网络以任意精度逼近。在本文中,我们证明了普遍逼近定理也适用于tessarin值神经网络。精确地说,任何连续的tessarin值函数都可以用隐藏层中具有分裂激活函数的单隐层tessarin值神经网络以任意精度逼近。文中给出了一个简单的数值算例,证实了理论结果,并揭示了在插值向量值函数时,切萨宁值神经网络优于实值模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal Approximation Theorem for Tessarine-Valued Neural Networks
The universal approximation theorem ensures that any continuous real-valued function defined on a compact subset can be approximated with arbitrary precision by a single hidden layer neural network. In this paper, we show that the universal approximation theorem also holds for tessarine-valued neural networks. Precisely, any continuous tessarine-valued function can be approximated with arbitrary precision by a single hidden layer tessarine-valued neural network with split activation functions in the hidden layer. A simple numerical example, confirming the theoretical result and revealing the superior performance of a tessarine-valued neural network over a real-valued model for interpolating a vector-valued function, is presented in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信