基于断裂力学模型的DBC陶瓷应力分析

P. Gaiser, M. Klingler, J. Wilde
{"title":"基于断裂力学模型的DBC陶瓷应力分析","authors":"P. Gaiser, M. Klingler, J. Wilde","doi":"10.1109/EUROSIME.2015.7103115","DOIUrl":null,"url":null,"abstract":"Nowadays, the progress in power electronics requires the improvement of the reliability of DBC ceramics. The well-documented phenomenon of conchoidal cracking initiates failures at the metallization-ceramic interface. It is a result of the CTE mismatch between metallization and ceramics. Thermal cycling stresses lead to crack propagation which can consequently lead to failure in power devices due to diminished heat dissipation. In this paper, a novel concept was used in order to analyze the thermo-mechanical stresses in DBC ceramics under passive thermal cycling conditions by combining the Finite Element Method and fracture mechanics. Fracture mechanical parameters such as stress intensity factors and the J-integral were calculated with regard to the variation of the dimple depth, the topology of the etched metal edge and the ceramic thickness. Furthermore, this concept was applied to optimize the edge geometry of the metallization with the criterion of stress reduction at the metal-ceramic interface. The concept to minimize local stresses as a basis for reliability improvement will have to be validated experimentally. By this methodology, improvements in substrate technology for future power electronic assembly are made possible. The principle of this study presented here is the basis for a future lifetime prediction.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Fracture mechanical modeling for the stress analysis of DBC ceramics\",\"authors\":\"P. Gaiser, M. Klingler, J. Wilde\",\"doi\":\"10.1109/EUROSIME.2015.7103115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the progress in power electronics requires the improvement of the reliability of DBC ceramics. The well-documented phenomenon of conchoidal cracking initiates failures at the metallization-ceramic interface. It is a result of the CTE mismatch between metallization and ceramics. Thermal cycling stresses lead to crack propagation which can consequently lead to failure in power devices due to diminished heat dissipation. In this paper, a novel concept was used in order to analyze the thermo-mechanical stresses in DBC ceramics under passive thermal cycling conditions by combining the Finite Element Method and fracture mechanics. Fracture mechanical parameters such as stress intensity factors and the J-integral were calculated with regard to the variation of the dimple depth, the topology of the etched metal edge and the ceramic thickness. Furthermore, this concept was applied to optimize the edge geometry of the metallization with the criterion of stress reduction at the metal-ceramic interface. The concept to minimize local stresses as a basis for reliability improvement will have to be validated experimentally. By this methodology, improvements in substrate technology for future power electronic assembly are made possible. The principle of this study presented here is the basis for a future lifetime prediction.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

随着电力电子技术的发展,对DBC陶瓷的可靠性提出了更高的要求。有充分证据表明,贝壳状裂纹现象引发了金属化-陶瓷界面的破坏。这是金属化和陶瓷之间CTE不匹配的结果。热循环应力导致裂纹扩展,从而导致功率器件由于散热减少而失效。本文采用有限元法和断裂力学相结合的方法,对被动热循环条件下DBC陶瓷的热-机械应力进行了分析。根据凹痕深度、蚀刻金属边缘拓扑结构和陶瓷厚度的变化,计算了应力强度因子和j积分等断裂力学参数。并以金属-陶瓷界面应力减小为准则,应用该概念对金属化边缘几何形状进行了优化。将局部应力最小化作为可靠性改进基础的概念必须经过实验验证。通过这种方法,可以改进未来电力电子组件的衬底技术。这里提出的这项研究的原理是未来寿命预测的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fracture mechanical modeling for the stress analysis of DBC ceramics
Nowadays, the progress in power electronics requires the improvement of the reliability of DBC ceramics. The well-documented phenomenon of conchoidal cracking initiates failures at the metallization-ceramic interface. It is a result of the CTE mismatch between metallization and ceramics. Thermal cycling stresses lead to crack propagation which can consequently lead to failure in power devices due to diminished heat dissipation. In this paper, a novel concept was used in order to analyze the thermo-mechanical stresses in DBC ceramics under passive thermal cycling conditions by combining the Finite Element Method and fracture mechanics. Fracture mechanical parameters such as stress intensity factors and the J-integral were calculated with regard to the variation of the dimple depth, the topology of the etched metal edge and the ceramic thickness. Furthermore, this concept was applied to optimize the edge geometry of the metallization with the criterion of stress reduction at the metal-ceramic interface. The concept to minimize local stresses as a basis for reliability improvement will have to be validated experimentally. By this methodology, improvements in substrate technology for future power electronic assembly are made possible. The principle of this study presented here is the basis for a future lifetime prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信