P. Singh, J. Rajagopalan, R. Lafollette, C. Fennie, D. Reisner
{"title":"基于模糊逻辑的微机电系统微电源","authors":"P. Singh, J. Rajagopalan, R. Lafollette, C. Fennie, D. Reisner","doi":"10.1109/BCAA.2001.905154","DOIUrl":null,"url":null,"abstract":"A severe limitation on the functional capability of remote, autonomous, microelectromechanical system (MEMS)-based sensors is the lack of a suitable micro power supply to power these devices. Such sensors often have low power requirements that may be provided by the combination of an energy scavenger (e.g., a solar cell) and a rechargeable microbattery made using integrated circuit fabrication methods. While rechargeable /spl mu/batteries and solar cells have been previously demonstrated, the development of a micro-charge/discharge controller has not. In this paper, the authors present a novel fuzzy logic-based solar charge controller that allows control of the charge/discharge of /spl mu/batteries. A breadboard implementation of the controller and its integration with a solar cell and /spl mu/battery are presented. The circuit topology of the /spl mu/battery controller is based on a buck converter design. During charging, the solar cell's operating point is adjusted by modulating the duty cycle of the buck converter's switching MOSFET using a fuzzy logic control algorithm to optimally charge the /spl mu/battery.","PeriodicalId":360008,"journal":{"name":"Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy logic-based micro power supply for MEMS applications\",\"authors\":\"P. Singh, J. Rajagopalan, R. Lafollette, C. Fennie, D. Reisner\",\"doi\":\"10.1109/BCAA.2001.905154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A severe limitation on the functional capability of remote, autonomous, microelectromechanical system (MEMS)-based sensors is the lack of a suitable micro power supply to power these devices. Such sensors often have low power requirements that may be provided by the combination of an energy scavenger (e.g., a solar cell) and a rechargeable microbattery made using integrated circuit fabrication methods. While rechargeable /spl mu/batteries and solar cells have been previously demonstrated, the development of a micro-charge/discharge controller has not. In this paper, the authors present a novel fuzzy logic-based solar charge controller that allows control of the charge/discharge of /spl mu/batteries. A breadboard implementation of the controller and its integration with a solar cell and /spl mu/battery are presented. The circuit topology of the /spl mu/battery controller is based on a buck converter design. During charging, the solar cell's operating point is adjusted by modulating the duty cycle of the buck converter's switching MOSFET using a fuzzy logic control algorithm to optimally charge the /spl mu/battery.\",\"PeriodicalId\":360008,\"journal\":{\"name\":\"Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCAA.2001.905154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCAA.2001.905154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy logic-based micro power supply for MEMS applications
A severe limitation on the functional capability of remote, autonomous, microelectromechanical system (MEMS)-based sensors is the lack of a suitable micro power supply to power these devices. Such sensors often have low power requirements that may be provided by the combination of an energy scavenger (e.g., a solar cell) and a rechargeable microbattery made using integrated circuit fabrication methods. While rechargeable /spl mu/batteries and solar cells have been previously demonstrated, the development of a micro-charge/discharge controller has not. In this paper, the authors present a novel fuzzy logic-based solar charge controller that allows control of the charge/discharge of /spl mu/batteries. A breadboard implementation of the controller and its integration with a solar cell and /spl mu/battery are presented. The circuit topology of the /spl mu/battery controller is based on a buck converter design. During charging, the solar cell's operating point is adjusted by modulating the duty cycle of the buck converter's switching MOSFET using a fuzzy logic control algorithm to optimally charge the /spl mu/battery.