{"title":"基于网格密度的说话人特征分类","authors":"Lin Li, Wei Wang, Shan He","doi":"10.1109/ICASID.2012.6325282","DOIUrl":null,"url":null,"abstract":"A new strategy of feature classification method for speaker recognition based on the grid-density clustering is presented. According to the concept of density-based and grid-distance-based distribution in the Mel-frequency cepstrum domain, the feature vectors of each speaker were self-adaptively classified into L clusters with less overlapped. With these convex and non-interwoven clusters, the Gaussian Mixture Model could statistically analyze and estimate the distinct feature classification for each speaker. Moreover, a new speaker recognition system was established by using GMM-UBM model. The experimental results showed that the clustering effect of the proposed method was superior to the K-means plus EM clustering method, and the proposed speaker recognition system achieves better classification performance in terms of verification accuracy and computational complexity.","PeriodicalId":408223,"journal":{"name":"Anti-counterfeiting, Security, and Identification","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grid-density based feature classification for speaker recognition\",\"authors\":\"Lin Li, Wei Wang, Shan He\",\"doi\":\"10.1109/ICASID.2012.6325282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new strategy of feature classification method for speaker recognition based on the grid-density clustering is presented. According to the concept of density-based and grid-distance-based distribution in the Mel-frequency cepstrum domain, the feature vectors of each speaker were self-adaptively classified into L clusters with less overlapped. With these convex and non-interwoven clusters, the Gaussian Mixture Model could statistically analyze and estimate the distinct feature classification for each speaker. Moreover, a new speaker recognition system was established by using GMM-UBM model. The experimental results showed that the clustering effect of the proposed method was superior to the K-means plus EM clustering method, and the proposed speaker recognition system achieves better classification performance in terms of verification accuracy and computational complexity.\",\"PeriodicalId\":408223,\"journal\":{\"name\":\"Anti-counterfeiting, Security, and Identification\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-counterfeiting, Security, and Identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASID.2012.6325282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-counterfeiting, Security, and Identification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASID.2012.6325282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grid-density based feature classification for speaker recognition
A new strategy of feature classification method for speaker recognition based on the grid-density clustering is presented. According to the concept of density-based and grid-distance-based distribution in the Mel-frequency cepstrum domain, the feature vectors of each speaker were self-adaptively classified into L clusters with less overlapped. With these convex and non-interwoven clusters, the Gaussian Mixture Model could statistically analyze and estimate the distinct feature classification for each speaker. Moreover, a new speaker recognition system was established by using GMM-UBM model. The experimental results showed that the clustering effect of the proposed method was superior to the K-means plus EM clustering method, and the proposed speaker recognition system achieves better classification performance in terms of verification accuracy and computational complexity.