关于椭圆曲线的1阶二次扭转和𝑝-adic调节子在爱森斯坦素数上的非简并性的注记

Ashay A. Burungale, C. Skinner
{"title":"关于椭圆曲线的1阶二次扭转和𝑝-adic调节子在爱森斯坦素数上的非简并性的注记","authors":"Ashay A. Burungale, C. Skinner","doi":"10.1090/bproc/144","DOIUrl":null,"url":null,"abstract":"<p>We show that for certain non-CM elliptic curves <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript slash double-struck upper Q\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_{/\\mathbb {Q}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript psi\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>ψ<!-- ψ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_{\\psi }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> have Mordell–Weil rank one <italic>and</italic> the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic height pairing on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript psi Baseline left-parenthesis double-struck upper Q right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>ψ<!-- ψ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E_{\\psi }(\\mathbb {Q})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic height. It is not known – though expected – that the archimedian height of these higher-codimensional cycles is non-zero.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on rank one quadratic twists of elliptic curves and the non-degeneracy of 𝑝-adic regulators at Eisenstein primes\",\"authors\":\"Ashay A. Burungale, C. Skinner\",\"doi\":\"10.1090/bproc/144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that for certain non-CM elliptic curves <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E Subscript slash double-struck upper Q\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_{/\\\\mathbb {Q}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> such that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\">\\n <mml:semantics>\\n <mml:mn>3</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E Subscript psi\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_{\\\\psi }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\">\\n <mml:semantics>\\n <mml:mi>E</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> have Mordell–Weil rank one <italic>and</italic> the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\">\\n <mml:semantics>\\n <mml:mn>3</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic height pairing on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E Subscript psi Baseline left-parenthesis double-struck upper Q right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_{\\\\psi }(\\\\mathbb {Q})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic height. It is not known – though expected – that the archimedian height of these higher-codimensional cycles is non-zero.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了对于某些非cm椭圆曲线E / Q E_{/\mathbb {Q}}使得33是一个良好约简的爱森斯坦素数,E E的二次扭曲E ψ E_{\psi}的正比例具有莫德尔-韦尔秩1,并且E ψ (Q) E_{\psi}(\mathbb {Q})上的33进阶高度配对是非简并的。对于其他爱森斯坦素数,我们也给出了类似但较弱的结果。证明方法也给出了在任意大维数域(广义Heegner环)上具有非零p进高度的中余维代数环的例子。这些高维循环的阿基米德高度不为零,这是未知的——尽管是预期的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on rank one quadratic twists of elliptic curves and the non-degeneracy of 𝑝-adic regulators at Eisenstein primes

We show that for certain non-CM elliptic curves E / Q E_{/\mathbb {Q}} such that 3 3 is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists E ψ E_{\psi } of E E have Mordell–Weil rank one and the 3 3 -adic height pairing on E ψ ( Q ) E_{\psi }(\mathbb {Q}) is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero p p -adic height. It is not known – though expected – that the archimedian height of these higher-codimensional cycles is non-zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信