{"title":"关于椭圆曲线的1阶二次扭转和𝑝-adic调节子在爱森斯坦素数上的非简并性的注记","authors":"Ashay A. Burungale, C. Skinner","doi":"10.1090/bproc/144","DOIUrl":null,"url":null,"abstract":"<p>We show that for certain non-CM elliptic curves <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript slash double-struck upper Q\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_{/\\mathbb {Q}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript psi\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>ψ<!-- ψ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_{\\psi }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> have Mordell–Weil rank one <italic>and</italic> the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic height pairing on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript psi Baseline left-parenthesis double-struck upper Q right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>ψ<!-- ψ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E_{\\psi }(\\mathbb {Q})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic height. It is not known – though expected – that the archimedian height of these higher-codimensional cycles is non-zero.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on rank one quadratic twists of elliptic curves and the non-degeneracy of 𝑝-adic regulators at Eisenstein primes\",\"authors\":\"Ashay A. Burungale, C. Skinner\",\"doi\":\"10.1090/bproc/144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that for certain non-CM elliptic curves <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E Subscript slash double-struck upper Q\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_{/\\\\mathbb {Q}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> such that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\">\\n <mml:semantics>\\n <mml:mn>3</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E Subscript psi\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_{\\\\psi }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\">\\n <mml:semantics>\\n <mml:mi>E</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> have Mordell–Weil rank one <italic>and</italic> the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\">\\n <mml:semantics>\\n <mml:mn>3</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic height pairing on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E Subscript psi Baseline left-parenthesis double-struck upper Q right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_{\\\\psi }(\\\\mathbb {Q})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic height. It is not known – though expected – that the archimedian height of these higher-codimensional cycles is non-zero.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A note on rank one quadratic twists of elliptic curves and the non-degeneracy of 𝑝-adic regulators at Eisenstein primes
We show that for certain non-CM elliptic curves E/QE_{/\mathbb {Q}} such that 33 is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists EψE_{\psi } of EE have Mordell–Weil rank one and the 33-adic height pairing on Eψ(Q)E_{\psi }(\mathbb {Q}) is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero pp-adic height. It is not known – though expected – that the archimedian height of these higher-codimensional cycles is non-zero.