Samed Maltabas, O. Ekekon, Kemal Kulovic, A. Meixner, M. Margala
{"title":"一种IDDQ BIST方法表征锁相环参数","authors":"Samed Maltabas, O. Ekekon, Kemal Kulovic, A. Meixner, M. Margala","doi":"10.1109/VTS.2013.6548911","DOIUrl":null,"url":null,"abstract":"In this work, a new IDDQ built-in self-test (BIST) solution is proposed to provide accurate on-chip current measurements for phase-locked loops (PLLs) found in deep-submicron system-on-chip (SoC) products. The proposed method characterizes PLL loop parameters to increase test quality with minimum additional test time and 4.5% accuracy in IBM 65 nm technology. A self-correction mechanism accompanies the proposed BIST to recover performance variations resulting from excessive process variation found in high-volume manufacturing (HVM). The proposed IDDQ BIST circuit's performance is evaluated in silicon using 0.18μm technology and achieves 2% accuracy with only 1.7% additional PLL area overhead. Extensions to other analog mixed signal circuit blocks should be possible.","PeriodicalId":138435,"journal":{"name":"2013 IEEE 31st VLSI Test Symposium (VTS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An IDDQ BIST approach to characterize phase-locked loop parameters\",\"authors\":\"Samed Maltabas, O. Ekekon, Kemal Kulovic, A. Meixner, M. Margala\",\"doi\":\"10.1109/VTS.2013.6548911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new IDDQ built-in self-test (BIST) solution is proposed to provide accurate on-chip current measurements for phase-locked loops (PLLs) found in deep-submicron system-on-chip (SoC) products. The proposed method characterizes PLL loop parameters to increase test quality with minimum additional test time and 4.5% accuracy in IBM 65 nm technology. A self-correction mechanism accompanies the proposed BIST to recover performance variations resulting from excessive process variation found in high-volume manufacturing (HVM). The proposed IDDQ BIST circuit's performance is evaluated in silicon using 0.18μm technology and achieves 2% accuracy with only 1.7% additional PLL area overhead. Extensions to other analog mixed signal circuit blocks should be possible.\",\"PeriodicalId\":138435,\"journal\":{\"name\":\"2013 IEEE 31st VLSI Test Symposium (VTS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 31st VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2013.6548911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2013.6548911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An IDDQ BIST approach to characterize phase-locked loop parameters
In this work, a new IDDQ built-in self-test (BIST) solution is proposed to provide accurate on-chip current measurements for phase-locked loops (PLLs) found in deep-submicron system-on-chip (SoC) products. The proposed method characterizes PLL loop parameters to increase test quality with minimum additional test time and 4.5% accuracy in IBM 65 nm technology. A self-correction mechanism accompanies the proposed BIST to recover performance variations resulting from excessive process variation found in high-volume manufacturing (HVM). The proposed IDDQ BIST circuit's performance is evaluated in silicon using 0.18μm technology and achieves 2% accuracy with only 1.7% additional PLL area overhead. Extensions to other analog mixed signal circuit blocks should be possible.