{"title":"建立沿海地区波浪传播的非线性色散数值模型","authors":"C. Raoult, M. Benoit, M. Yates","doi":"10.5150/revue-paralia.2018.n01","DOIUrl":null,"url":null,"abstract":"Les effets non-lineaires et dispersifs etant particulierement importants pour les vagues en zone cotiere, nous etudions et developpons un modele potentiel completement non-lineaire et dispersif resolvant les equations d’Euler-Zakharov qui regissent l’evolution temporelle de la position et du potentiel des vitesses a la surface libre. La formulation mathematique ainsi que sa mise en œuvre numerique sont exposees, avec la presentation de la methode d’extension du domaine d’une a deux dimensions d’espace horizontales. Les capacites non-lineaires et dispersives de la version 1DH du modele sont demontrees a travers l’application a deux cas tests : d’abord, la generation et la propagation des harmoniques libres et liees associees aux vagues regulieres creees par un generateur de vagues de type piston sur un fond plat d’apres les experiences de CHAPALAIN et al. (1992), puis la propagation de vagues irregulieres au-dessus d’une barre sous-marine d’apres les experiences de BECQ-GIRARD et al. (1999). La bonne representation des transferts d’energie entre les differentes composantes harmoniques montre la capacite et la precision du modele a representer les effets dispersifs et non-lineaires d’ordres eleves. Le developpement d’une version 2DH du modele a ete teste pour simuler la propagation de vagues regulieres sur une marche immergee semi-circulaire agissant comme une lentille convergente, afin de reproduire deux des experiences de WHALIN (1971). Les premiers resultats obtenus utilisant des fonctions de base radiales pour calculer les derivees dans le plan horizontal montrent la capacite du modele de simuler des cas de bathymetries variables en 2DH. Cette methode semble prometteuse en vue de l’application a des cas realistes. Development of a nonlinear and dispersive numerical model of wave propagation in the coastal zone Abstract: Nonlinear and dispersive effects are significant for nearshore waves, leading to the study and development of a fully nonlinear and dispersive potential-flow model solving the Euler-Zakharov equations, which determine the temporal evolution of the free surface elevation and velocity potential. The mathematical model and its numerical implementation are presented, as well as the approach chosen to extend the model to two horizontal dimensions. The nonlinear and dispersive capabilities of the 1DH version of the model are demonstrated by applying the model to two test cases: (1) the generation of regular waves created by a piston-like wave maker and the propagation of the associated free and bound harmonics over a flat bottom, following the experiments of CHAPALAIN et al. (1992), and (2) the propagation of irregular waves over a barred beach profile, following the experiments of BECQ-GIRARD et al. (1999). The accuracy of the model in representing high-order nonlinear and dispersive effects is demonstrated by the reproduction of the energy transfers between different harmonic components. Then, the development of the 2DH version of the model is tested simulating the propagation of regular waves over a semi-circular step acting as a converging lens, reproducing two experiments of WHALIN (1971). The initial results obtained using Radial Basis Functions to estimate the horizontal derivatives demonstrate the ability of the model to simulate wave propagation over variable 2DH bathymetries. These results indicate the potential of applying the model to simulate realistic cases. Keywords: Nonlinear waves; Coastal hydrodynamics; Water wave simulation; Numerical modeling; Wave models; Radial Basis Functions.","PeriodicalId":202784,"journal":{"name":"Revue Paralia","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Développement d’un modèle numérique non-linéaire et dispersif pour la propagation des vagues en zone côtière\",\"authors\":\"C. Raoult, M. Benoit, M. Yates\",\"doi\":\"10.5150/revue-paralia.2018.n01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Les effets non-lineaires et dispersifs etant particulierement importants pour les vagues en zone cotiere, nous etudions et developpons un modele potentiel completement non-lineaire et dispersif resolvant les equations d’Euler-Zakharov qui regissent l’evolution temporelle de la position et du potentiel des vitesses a la surface libre. La formulation mathematique ainsi que sa mise en œuvre numerique sont exposees, avec la presentation de la methode d’extension du domaine d’une a deux dimensions d’espace horizontales. Les capacites non-lineaires et dispersives de la version 1DH du modele sont demontrees a travers l’application a deux cas tests : d’abord, la generation et la propagation des harmoniques libres et liees associees aux vagues regulieres creees par un generateur de vagues de type piston sur un fond plat d’apres les experiences de CHAPALAIN et al. (1992), puis la propagation de vagues irregulieres au-dessus d’une barre sous-marine d’apres les experiences de BECQ-GIRARD et al. (1999). La bonne representation des transferts d’energie entre les differentes composantes harmoniques montre la capacite et la precision du modele a representer les effets dispersifs et non-lineaires d’ordres eleves. Le developpement d’une version 2DH du modele a ete teste pour simuler la propagation de vagues regulieres sur une marche immergee semi-circulaire agissant comme une lentille convergente, afin de reproduire deux des experiences de WHALIN (1971). Les premiers resultats obtenus utilisant des fonctions de base radiales pour calculer les derivees dans le plan horizontal montrent la capacite du modele de simuler des cas de bathymetries variables en 2DH. Cette methode semble prometteuse en vue de l’application a des cas realistes. Development of a nonlinear and dispersive numerical model of wave propagation in the coastal zone Abstract: Nonlinear and dispersive effects are significant for nearshore waves, leading to the study and development of a fully nonlinear and dispersive potential-flow model solving the Euler-Zakharov equations, which determine the temporal evolution of the free surface elevation and velocity potential. The mathematical model and its numerical implementation are presented, as well as the approach chosen to extend the model to two horizontal dimensions. The nonlinear and dispersive capabilities of the 1DH version of the model are demonstrated by applying the model to two test cases: (1) the generation of regular waves created by a piston-like wave maker and the propagation of the associated free and bound harmonics over a flat bottom, following the experiments of CHAPALAIN et al. (1992), and (2) the propagation of irregular waves over a barred beach profile, following the experiments of BECQ-GIRARD et al. (1999). The accuracy of the model in representing high-order nonlinear and dispersive effects is demonstrated by the reproduction of the energy transfers between different harmonic components. Then, the development of the 2DH version of the model is tested simulating the propagation of regular waves over a semi-circular step acting as a converging lens, reproducing two experiments of WHALIN (1971). The initial results obtained using Radial Basis Functions to estimate the horizontal derivatives demonstrate the ability of the model to simulate wave propagation over variable 2DH bathymetries. These results indicate the potential of applying the model to simulate realistic cases. Keywords: Nonlinear waves; Coastal hydrodynamics; Water wave simulation; Numerical modeling; Wave models; Radial Basis Functions.\",\"PeriodicalId\":202784,\"journal\":{\"name\":\"Revue Paralia\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue Paralia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5150/revue-paralia.2018.n01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Paralia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5150/revue-paralia.2018.n01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
由于非线性和色散效应对沿海波浪特别重要,我们研究并建立了一个完全非线性和色散势模型,该模型求解了控制自由表面位置和速度势的时间演化的欧拉-扎哈罗夫方程。给出了数学公式及其数值实现,并给出了从一维水平空间扩展到二维空间的方法。non-lineaires设计基础和活性剂模型的版本1DH demontrees穿越了被执行了两个测试用例:首先,generation和传播自由及相关关联的谐波对波浪月)每一道菜井下活塞式波浪上一个班的孩子经历的CHAPALAIN et al .(1992)大关上方,然后irregulieres潮蔓延跨海班的孩子经历的BECQ-GIRARD et al .(1999)。对不同谐波分量之间能量传递的良好表示表明了该模型在表示高阶色散和非线性效应方面的能力和准确性。该模型的2DH版本的开发已经进行了测试,以模拟规则波在半圆形浸入式步态上的传播,作为一个收敛透镜,以复制WHALIN(1971)的两个实验。利用径向基函数计算水平面导线得到的第一个结果显示了该模型在2DH中模拟可变水深情况的能力。这种方法在实际应用中似乎很有前途。Development of a nonlinear分散wave数控model of in the沿海地区蔓延的文摘:nonlinear and are分散效应”重大for nearshore waves,领先to the study and Development of a完全nonlinear分散解决potential-flow model the Euler-Zakharov方程,which the temporal进化成型of the free水面标高velocity潜能。介绍了数学模型及其数值实现,以及将模型扩展到两个水平维度所选择的方法。nonlinear and分散能力of The model of The 1DH版本是由《地表水的model to two: (1) The generation of test方格regular waves的by a piston-like maker and The wave of The free and associated蔓延bound harmonics over a平bottom,大剧院CHAPALAIN等人的功能实验》(1992年),和(2)不规则的蔓延》waves over a门滩profile,大剧院“实验之BECQ-GIRARD et al .(1999)。通过再现不同谐波分量之间的能量转移,证明了该模型在表示高阶非线性和色散效应方面的准确性。然后,该模型第二版的开发通过模拟正则波在半圆形步长上的传播进行了测试,该步长作为一个透镜,复制了WHALIN的两个实验(1971年)。利用径向基函数估计水平导数得到的初步结果证明了该模型在可变2DH水深上模拟波浪传播的能力。这些结果表明了将该模型应用于模拟现实情况的潜力。关键词:非线性波;沿海hydrodynamics);水波模拟;数控建模;Wave模特;径向基础功能。
Développement d’un modèle numérique non-linéaire et dispersif pour la propagation des vagues en zone côtière
Les effets non-lineaires et dispersifs etant particulierement importants pour les vagues en zone cotiere, nous etudions et developpons un modele potentiel completement non-lineaire et dispersif resolvant les equations d’Euler-Zakharov qui regissent l’evolution temporelle de la position et du potentiel des vitesses a la surface libre. La formulation mathematique ainsi que sa mise en œuvre numerique sont exposees, avec la presentation de la methode d’extension du domaine d’une a deux dimensions d’espace horizontales. Les capacites non-lineaires et dispersives de la version 1DH du modele sont demontrees a travers l’application a deux cas tests : d’abord, la generation et la propagation des harmoniques libres et liees associees aux vagues regulieres creees par un generateur de vagues de type piston sur un fond plat d’apres les experiences de CHAPALAIN et al. (1992), puis la propagation de vagues irregulieres au-dessus d’une barre sous-marine d’apres les experiences de BECQ-GIRARD et al. (1999). La bonne representation des transferts d’energie entre les differentes composantes harmoniques montre la capacite et la precision du modele a representer les effets dispersifs et non-lineaires d’ordres eleves. Le developpement d’une version 2DH du modele a ete teste pour simuler la propagation de vagues regulieres sur une marche immergee semi-circulaire agissant comme une lentille convergente, afin de reproduire deux des experiences de WHALIN (1971). Les premiers resultats obtenus utilisant des fonctions de base radiales pour calculer les derivees dans le plan horizontal montrent la capacite du modele de simuler des cas de bathymetries variables en 2DH. Cette methode semble prometteuse en vue de l’application a des cas realistes. Development of a nonlinear and dispersive numerical model of wave propagation in the coastal zone Abstract: Nonlinear and dispersive effects are significant for nearshore waves, leading to the study and development of a fully nonlinear and dispersive potential-flow model solving the Euler-Zakharov equations, which determine the temporal evolution of the free surface elevation and velocity potential. The mathematical model and its numerical implementation are presented, as well as the approach chosen to extend the model to two horizontal dimensions. The nonlinear and dispersive capabilities of the 1DH version of the model are demonstrated by applying the model to two test cases: (1) the generation of regular waves created by a piston-like wave maker and the propagation of the associated free and bound harmonics over a flat bottom, following the experiments of CHAPALAIN et al. (1992), and (2) the propagation of irregular waves over a barred beach profile, following the experiments of BECQ-GIRARD et al. (1999). The accuracy of the model in representing high-order nonlinear and dispersive effects is demonstrated by the reproduction of the energy transfers between different harmonic components. Then, the development of the 2DH version of the model is tested simulating the propagation of regular waves over a semi-circular step acting as a converging lens, reproducing two experiments of WHALIN (1971). The initial results obtained using Radial Basis Functions to estimate the horizontal derivatives demonstrate the ability of the model to simulate wave propagation over variable 2DH bathymetries. These results indicate the potential of applying the model to simulate realistic cases. Keywords: Nonlinear waves; Coastal hydrodynamics; Water wave simulation; Numerical modeling; Wave models; Radial Basis Functions.