非对称核壳银纳米线等离子体杂化共振的人工神经网络反设计

N. Sakhnenko
{"title":"非对称核壳银纳米线等离子体杂化共振的人工神经网络反设计","authors":"N. Sakhnenko","doi":"10.1109/ELNANO54667.2022.9927027","DOIUrl":null,"url":null,"abstract":"Artificial neural network (ANN) based modeling is becoming a new efficient tool in the field of nanophotonic simulation with capability of efficient inverse design. In this paper, we show that fully-connected feed-forward neural network with proper architecture can learn mapping from multiple resonance spectrum to core-shell nanowire structure geometry. When fed as input a set of desired wavelengths and their Q-factors, the network outputs candidate geometry parameters. Dataset for training is generated from semi-analytical solution of the Helmholtz equation of corresponding electromagnetic wave scattering problem.","PeriodicalId":178034,"journal":{"name":"2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Hybrid Resonances Inverse Design in Asymmetric Core-Shell Silver Nanowires with Artificial Neural Networks\",\"authors\":\"N. Sakhnenko\",\"doi\":\"10.1109/ELNANO54667.2022.9927027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural network (ANN) based modeling is becoming a new efficient tool in the field of nanophotonic simulation with capability of efficient inverse design. In this paper, we show that fully-connected feed-forward neural network with proper architecture can learn mapping from multiple resonance spectrum to core-shell nanowire structure geometry. When fed as input a set of desired wavelengths and their Q-factors, the network outputs candidate geometry parameters. Dataset for training is generated from semi-analytical solution of the Helmholtz equation of corresponding electromagnetic wave scattering problem.\",\"PeriodicalId\":178034,\"journal\":{\"name\":\"2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELNANO54667.2022.9927027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO54667.2022.9927027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于人工神经网络(ANN)的建模具有高效的反设计能力,正在成为纳米光子仿真领域的一种新的有效工具。在本文中,我们证明了具有适当结构的全连接前馈神经网络可以学习从多共振谱到核壳纳米线结构几何的映射。当输入一组所需波长及其q因子时,网络输出候选几何参数。训练数据集由相应电磁波散射问题的亥姆霍兹方程的半解析解生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasmonic Hybrid Resonances Inverse Design in Asymmetric Core-Shell Silver Nanowires with Artificial Neural Networks
Artificial neural network (ANN) based modeling is becoming a new efficient tool in the field of nanophotonic simulation with capability of efficient inverse design. In this paper, we show that fully-connected feed-forward neural network with proper architecture can learn mapping from multiple resonance spectrum to core-shell nanowire structure geometry. When fed as input a set of desired wavelengths and their Q-factors, the network outputs candidate geometry parameters. Dataset for training is generated from semi-analytical solution of the Helmholtz equation of corresponding electromagnetic wave scattering problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信