规划无线Mesh网络的最小队列长度负载均衡

G. Capdehourat, Federico Larroca, P. Belzarena
{"title":"规划无线Mesh网络的最小队列长度负载均衡","authors":"G. Capdehourat, Federico Larroca, P. Belzarena","doi":"10.1109/ISWCS.2012.6328474","DOIUrl":null,"url":null,"abstract":"Wireless Mesh Networks (WMNS) have emerged in the last years as a cost-efficient alternative to traditional wired access networks. In order to fully exploit the intrinsically scarce resources WMNS possess, the use of dynamic routing has been proposed. We argue instead in favour of separating routing from forwarding (i.e. à la MPLS) and implementing a dynamic load-balancing scheme that forwards incoming packets along several pre-established paths in order to minimize a certain congestion function. In this paper, we consider a particular but very important scenario: a planned WMN where all bidirectional point-to-point links do not interfere with each other. Due to its versatility and simplicity, we use the sum over all links of the mean queue length as congestion function. A method to learn this function from measurements is presented, whereas simulations illustrate the framework.","PeriodicalId":167119,"journal":{"name":"2012 International Symposium on Wireless Communication Systems (ISWCS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Minimum queue length load-balancing in planned Wireless Mesh Networks\",\"authors\":\"G. Capdehourat, Federico Larroca, P. Belzarena\",\"doi\":\"10.1109/ISWCS.2012.6328474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Mesh Networks (WMNS) have emerged in the last years as a cost-efficient alternative to traditional wired access networks. In order to fully exploit the intrinsically scarce resources WMNS possess, the use of dynamic routing has been proposed. We argue instead in favour of separating routing from forwarding (i.e. à la MPLS) and implementing a dynamic load-balancing scheme that forwards incoming packets along several pre-established paths in order to minimize a certain congestion function. In this paper, we consider a particular but very important scenario: a planned WMN where all bidirectional point-to-point links do not interfere with each other. Due to its versatility and simplicity, we use the sum over all links of the mean queue length as congestion function. A method to learn this function from measurements is presented, whereas simulations illustrate the framework.\",\"PeriodicalId\":167119,\"journal\":{\"name\":\"2012 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2012.6328474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2012.6328474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无线网状网络(WMNS)作为传统有线接入网的一种经济高效的替代方案在过去几年中出现。为了充分利用WMNS固有的稀缺资源,提出了采用动态路由的方法。相反,我们主张将路由与转发(即:MPLS)分离,并实现一个动态负载平衡方案,该方案沿着几个预先建立的路径转发传入数据包,以最小化某个拥塞函数。在本文中,我们考虑了一个特殊但非常重要的场景:一个所有双向点对点链路不相互干扰的计划WMN。由于它的通用性和简单性,我们使用平均队列长度的所有链路的总和作为拥塞函数。提出了一种从测量中学习该函数的方法,并通过仿真说明了该框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum queue length load-balancing in planned Wireless Mesh Networks
Wireless Mesh Networks (WMNS) have emerged in the last years as a cost-efficient alternative to traditional wired access networks. In order to fully exploit the intrinsically scarce resources WMNS possess, the use of dynamic routing has been proposed. We argue instead in favour of separating routing from forwarding (i.e. à la MPLS) and implementing a dynamic load-balancing scheme that forwards incoming packets along several pre-established paths in order to minimize a certain congestion function. In this paper, we consider a particular but very important scenario: a planned WMN where all bidirectional point-to-point links do not interfere with each other. Due to its versatility and simplicity, we use the sum over all links of the mean queue length as congestion function. A method to learn this function from measurements is presented, whereas simulations illustrate the framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信