高斯白噪声下的正交树通信编码

A. Viterbi
{"title":"高斯白噪声下的正交树通信编码","authors":"A. Viterbi","doi":"10.1109/TCOM.1967.1089561","DOIUrl":null,"url":null,"abstract":"This paper describes a convolutional encoder for generating tree codes whose distinct codewords are orthogonal over the constraint length of the code. The performance of this class of codes is analyzed and the error probability is shown to decrease exponentially with the energy-to-noise ratio over the constraint length period of the code. The performance is compared with wellknown results for orthogonal block codes and shown to be considerably superior to the latter. Asymptotic results are also obtained which coincide with results for the class of very noisy memoryless channels.","PeriodicalId":134522,"journal":{"name":"IEEE Transactions on Communication Technology","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1967-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Orthogonal Tree Codes for Communication in the Presence of White Gaussian Noise\",\"authors\":\"A. Viterbi\",\"doi\":\"10.1109/TCOM.1967.1089561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a convolutional encoder for generating tree codes whose distinct codewords are orthogonal over the constraint length of the code. The performance of this class of codes is analyzed and the error probability is shown to decrease exponentially with the energy-to-noise ratio over the constraint length period of the code. The performance is compared with wellknown results for orthogonal block codes and shown to be considerably superior to the latter. Asymptotic results are also obtained which coincide with results for the class of very noisy memoryless channels.\",\"PeriodicalId\":134522,\"journal\":{\"name\":\"IEEE Transactions on Communication Technology\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCOM.1967.1089561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCOM.1967.1089561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

本文描述了一种卷积编码器,用于生成树形码,其不同码字在码的约束长度上正交。对这类码的性能进行了分析,结果表明,在码的约束长度周期内,误差概率随码的能噪比呈指数下降。并与正交分组码的性能进行了比较,结果表明其性能明显优于正交分组码。得到的渐近结果与一类极噪声无记忆信道的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal Tree Codes for Communication in the Presence of White Gaussian Noise
This paper describes a convolutional encoder for generating tree codes whose distinct codewords are orthogonal over the constraint length of the code. The performance of this class of codes is analyzed and the error probability is shown to decrease exponentially with the energy-to-noise ratio over the constraint length period of the code. The performance is compared with wellknown results for orthogonal block codes and shown to be considerably superior to the latter. Asymptotic results are also obtained which coincide with results for the class of very noisy memoryless channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信