利用复沃森分布改进声源窄带DOA估计

Anastasios Alexandridis, A. Mouchtaris
{"title":"利用复沃森分布改进声源窄带DOA估计","authors":"Anastasios Alexandridis, A. Mouchtaris","doi":"10.1109/EUSIPCO.2016.7760492","DOIUrl":null,"url":null,"abstract":"Narrowband direction-of-arrival (DOA) estimates for each time-frequency (TF) point offer a parametric spatial modeling of the acoustic environment which is very commonly used in many applications, such as source separation, dereverberation, and spatial audio. However, irrespective of the narrowband DOA estimation method used, many TF-points suffer from erroneous estimates due to noise and reverberation. We propose a novel technique to yield more accurate DOA estimates in the TF-domain, through statistical modeling of each TF-point with a complex Watson distribution. Then, instead of using the microphone array signals at a given TF-point to estimate the DOA, the maximum likelihood estimate of the mode vector of the distribution is used as input to the DOA estimation method. This approach results in more accurate DOA estimates and thus more accurate modeling of the acoustic environment, while it can be used with any narrowband DOA estimation method and microphone array geometry.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"2008 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving narrowband DOA estimation of sound sources using the complex Watson distribution\",\"authors\":\"Anastasios Alexandridis, A. Mouchtaris\",\"doi\":\"10.1109/EUSIPCO.2016.7760492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Narrowband direction-of-arrival (DOA) estimates for each time-frequency (TF) point offer a parametric spatial modeling of the acoustic environment which is very commonly used in many applications, such as source separation, dereverberation, and spatial audio. However, irrespective of the narrowband DOA estimation method used, many TF-points suffer from erroneous estimates due to noise and reverberation. We propose a novel technique to yield more accurate DOA estimates in the TF-domain, through statistical modeling of each TF-point with a complex Watson distribution. Then, instead of using the microphone array signals at a given TF-point to estimate the DOA, the maximum likelihood estimate of the mode vector of the distribution is used as input to the DOA estimation method. This approach results in more accurate DOA estimates and thus more accurate modeling of the acoustic environment, while it can be used with any narrowband DOA estimation method and microphone array geometry.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"2008 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每个时频点的窄带到达方向(DOA)估计提供了声环境的参数化空间建模,这在许多应用中非常常用,例如源分离,去噪和空间音频。然而,无论使用何种窄带DOA估计方法,由于噪声和混响,许多tf点都会受到错误估计的影响。我们提出了一种新的技术,通过对具有复杂沃森分布的每个tf点进行统计建模,在tf域中产生更准确的DOA估计。然后,不再使用给定tf点处的传声器阵列信号来估计DOA,而是使用分布模态向量的最大似然估计作为DOA估计方法的输入。该方法可以获得更精确的DOA估计,从而更准确地建模声环境,同时它可以与任何窄带DOA估计方法和麦克风阵列几何形状一起使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving narrowband DOA estimation of sound sources using the complex Watson distribution
Narrowband direction-of-arrival (DOA) estimates for each time-frequency (TF) point offer a parametric spatial modeling of the acoustic environment which is very commonly used in many applications, such as source separation, dereverberation, and spatial audio. However, irrespective of the narrowband DOA estimation method used, many TF-points suffer from erroneous estimates due to noise and reverberation. We propose a novel technique to yield more accurate DOA estimates in the TF-domain, through statistical modeling of each TF-point with a complex Watson distribution. Then, instead of using the microphone array signals at a given TF-point to estimate the DOA, the maximum likelihood estimate of the mode vector of the distribution is used as input to the DOA estimation method. This approach results in more accurate DOA estimates and thus more accurate modeling of the acoustic environment, while it can be used with any narrowband DOA estimation method and microphone array geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信