基于自整定卡尔曼滤波的鲁棒移动机器人视觉跟踪控制系统

Chi-Yi Tsai, K. Song, X. Dutoit, H. Brussel, M. Nuttin
{"title":"基于自整定卡尔曼滤波的鲁棒移动机器人视觉跟踪控制系统","authors":"Chi-Yi Tsai, K. Song, X. Dutoit, H. Brussel, M. Nuttin","doi":"10.1109/CIRA.2007.382860","DOIUrl":null,"url":null,"abstract":"This paper presents a novel design of a robust visual tracking control system, which consists of a visual tracking controller and a visual state estimator. This system facilitates human-robot interaction of a unicycle-modeled mobile robot equipped with a tilt camera. Based on a novel dual-Jacobian visual interaction model, a dynamic motion target can be tracked using a single visual tracking controller without target's 3D velocity information. The visual state estimator aims to estimate the optimal system state and target image velocity, which is used later by the visual tracking controller. To achieve this, a self-tuning Kalman filter is proposed to estimate interesting parameters online in real-time. Further, because the proposed method is fully working in image space, the computational complexity and the sensor/camera modeling errors can be reduced. Experimental results validate the effectiveness of the proposed method, in terms of tracking performance, system convergence, and robustness.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Robust Mobile Robot Visual Tracking Control System Using Self-Tuning Kalman Filter\",\"authors\":\"Chi-Yi Tsai, K. Song, X. Dutoit, H. Brussel, M. Nuttin\",\"doi\":\"10.1109/CIRA.2007.382860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel design of a robust visual tracking control system, which consists of a visual tracking controller and a visual state estimator. This system facilitates human-robot interaction of a unicycle-modeled mobile robot equipped with a tilt camera. Based on a novel dual-Jacobian visual interaction model, a dynamic motion target can be tracked using a single visual tracking controller without target's 3D velocity information. The visual state estimator aims to estimate the optimal system state and target image velocity, which is used later by the visual tracking controller. To achieve this, a self-tuning Kalman filter is proposed to estimate interesting parameters online in real-time. Further, because the proposed method is fully working in image space, the computational complexity and the sensor/camera modeling errors can be reduced. Experimental results validate the effectiveness of the proposed method, in terms of tracking performance, system convergence, and robustness.\",\"PeriodicalId\":301626,\"journal\":{\"name\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2007.382860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种新的鲁棒视觉跟踪控制系统设计,该系统由视觉跟踪控制器和视觉状态估计器组成。该系统为配备倾斜摄像头的独轮车移动机器人的人机交互提供了便利。基于一种新的双雅可比视觉交互模型,在不需要目标三维速度信息的情况下,实现了单视觉跟踪控制器对动态运动目标的跟踪。视觉状态估计器的目的是估计系统的最优状态和目标图像速度,供视觉跟踪控制器使用。为了实现这一目标,提出了一种自调谐卡尔曼滤波器来在线实时估计感兴趣的参数。此外,由于该方法完全在图像空间中工作,因此可以减少计算复杂度和传感器/相机建模误差。实验结果验证了该方法在跟踪性能、系统收敛性和鲁棒性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Mobile Robot Visual Tracking Control System Using Self-Tuning Kalman Filter
This paper presents a novel design of a robust visual tracking control system, which consists of a visual tracking controller and a visual state estimator. This system facilitates human-robot interaction of a unicycle-modeled mobile robot equipped with a tilt camera. Based on a novel dual-Jacobian visual interaction model, a dynamic motion target can be tracked using a single visual tracking controller without target's 3D velocity information. The visual state estimator aims to estimate the optimal system state and target image velocity, which is used later by the visual tracking controller. To achieve this, a self-tuning Kalman filter is proposed to estimate interesting parameters online in real-time. Further, because the proposed method is fully working in image space, the computational complexity and the sensor/camera modeling errors can be reduced. Experimental results validate the effectiveness of the proposed method, in terms of tracking performance, system convergence, and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信