IP200严重事故SBO和紧急停电过程响应分析

Z. Zheng, M. Peng, Hao Yu, Yang Yang
{"title":"IP200严重事故SBO和紧急停电过程响应分析","authors":"Z. Zheng, M. Peng, Hao Yu, Yang Yang","doi":"10.1115/icone28-64541","DOIUrl":null,"url":null,"abstract":"\n Advanced SMRs such as the integrated pressurized water reactor IP200 use different design in the systems, structures, components from large reactors for achieving a high level of safety and reliability. In this thesis, the IP200 severe accident induced by the SBO and emergency power failure was modeled and analyzed using RELAP5 / SCDAP / MOD3.4 code. Based on the steady state calculation, which agrees well with designed values, the SBO accident for transient calculation is carried out. First, the case of the SBO accident without the passive core cooling system was calculated. The progression and scenario in the RPV was simulated and analyzed, including the transient response, cooling capacity and thermal-hydraulic characteristics and so on. Then, mitigation measures PRHRS and CMT were put in at four different time points when the core is began to uncovered, the core is completely uncovered, hydrogen is began to produced, and the molten pool is formed. The results show that putting in mitigation measures before the accident progresses to the point where the core starts to produce hydrogen can ensure that the core does not melt and avoid hydrogen risk.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of IP200 Severe Accident Process Response to SBO and Emergency Power Failure\",\"authors\":\"Z. Zheng, M. Peng, Hao Yu, Yang Yang\",\"doi\":\"10.1115/icone28-64541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Advanced SMRs such as the integrated pressurized water reactor IP200 use different design in the systems, structures, components from large reactors for achieving a high level of safety and reliability. In this thesis, the IP200 severe accident induced by the SBO and emergency power failure was modeled and analyzed using RELAP5 / SCDAP / MOD3.4 code. Based on the steady state calculation, which agrees well with designed values, the SBO accident for transient calculation is carried out. First, the case of the SBO accident without the passive core cooling system was calculated. The progression and scenario in the RPV was simulated and analyzed, including the transient response, cooling capacity and thermal-hydraulic characteristics and so on. Then, mitigation measures PRHRS and CMT were put in at four different time points when the core is began to uncovered, the core is completely uncovered, hydrogen is began to produced, and the molten pool is formed. The results show that putting in mitigation measures before the accident progresses to the point where the core starts to produce hydrogen can ensure that the core does not melt and avoid hydrogen risk.\",\"PeriodicalId\":108609,\"journal\":{\"name\":\"Volume 4: Student Paper Competition\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone28-64541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone28-64541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先进的小型反应堆,如集成压水反应堆IP200,在系统、结构、部件上采用与大型反应堆不同的设计,以实现高水平的安全性和可靠性。本文利用RELAP5 / SCDAP / MOD3.4代码对SBO和应急断电引发的IP200严重事故进行建模和分析。在稳态计算与设计值吻合较好的基础上,进行了SBO事故暂态计算。首先,对无被动堆芯冷却系统的SBO事故进行了计算。模拟和分析了RPV的过程和情景,包括瞬态响应、制冷量和热工特性等。然后,在堆芯开始覆盖、堆芯完全覆盖、氢气开始产生和熔池形成四个不同的时间点,分别实施了PRHRS和CMT缓解措施。结果表明,在事故发展到堆芯开始产生氢之前采取缓解措施,可以确保堆芯不熔化,避免氢风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of IP200 Severe Accident Process Response to SBO and Emergency Power Failure
Advanced SMRs such as the integrated pressurized water reactor IP200 use different design in the systems, structures, components from large reactors for achieving a high level of safety and reliability. In this thesis, the IP200 severe accident induced by the SBO and emergency power failure was modeled and analyzed using RELAP5 / SCDAP / MOD3.4 code. Based on the steady state calculation, which agrees well with designed values, the SBO accident for transient calculation is carried out. First, the case of the SBO accident without the passive core cooling system was calculated. The progression and scenario in the RPV was simulated and analyzed, including the transient response, cooling capacity and thermal-hydraulic characteristics and so on. Then, mitigation measures PRHRS and CMT were put in at four different time points when the core is began to uncovered, the core is completely uncovered, hydrogen is began to produced, and the molten pool is formed. The results show that putting in mitigation measures before the accident progresses to the point where the core starts to produce hydrogen can ensure that the core does not melt and avoid hydrogen risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信