{"title":"利用后期编辑信息提高统计机器翻译性能的探索","authors":"Dong Yu, Bo Xu","doi":"10.1109/CMSP.2011.144","DOIUrl":null,"url":null,"abstract":"Manually Post-editing (PE) is a traditional and effective way of improving machine translation outputs. However, it is costly and time consuming. In this paper, manually PE knowledge including word and phrase revision information is used for updating statistical machine translation (SMT) model, the updated system can avoidsimilar mistakes and achieve better translation performance. A number of SMT model compatible features are extracted from PE process, and then an updating process is implemented to combine such PE knowledge into the original SMT model. Experiments on Chinese to English translation are carried out. Results show that our approach could improve the performance of baseline SMT system. Additionally, the updated SMT model has the capability of generating user expected outputs through PE information combination process.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Exploration on Improving Statistical Machine Translation Performance by Using Post-Editing Information\",\"authors\":\"Dong Yu, Bo Xu\",\"doi\":\"10.1109/CMSP.2011.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manually Post-editing (PE) is a traditional and effective way of improving machine translation outputs. However, it is costly and time consuming. In this paper, manually PE knowledge including word and phrase revision information is used for updating statistical machine translation (SMT) model, the updated system can avoidsimilar mistakes and achieve better translation performance. A number of SMT model compatible features are extracted from PE process, and then an updating process is implemented to combine such PE knowledge into the original SMT model. Experiments on Chinese to English translation are carried out. Results show that our approach could improve the performance of baseline SMT system. Additionally, the updated SMT model has the capability of generating user expected outputs through PE information combination process.\",\"PeriodicalId\":309902,\"journal\":{\"name\":\"2011 International Conference on Multimedia and Signal Processing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Multimedia and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMSP.2011.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Exploration on Improving Statistical Machine Translation Performance by Using Post-Editing Information
Manually Post-editing (PE) is a traditional and effective way of improving machine translation outputs. However, it is costly and time consuming. In this paper, manually PE knowledge including word and phrase revision information is used for updating statistical machine translation (SMT) model, the updated system can avoidsimilar mistakes and achieve better translation performance. A number of SMT model compatible features are extracted from PE process, and then an updating process is implemented to combine such PE knowledge into the original SMT model. Experiments on Chinese to English translation are carried out. Results show that our approach could improve the performance of baseline SMT system. Additionally, the updated SMT model has the capability of generating user expected outputs through PE information combination process.