{"title":"电阻抗断层成像中用于多频静态成像的宽带系统。","authors":"P J Riu, J Rosell, A Lozano, R Pallàs-Areny","doi":"10.1088/0143-0815/13/a/013","DOIUrl":null,"url":null,"abstract":"<p><p>A widely accepted method for static imaging in electrical impedance tomography (EIT) is to measure at two frequencies. The choice of measurement frequencies is application-dependent because some different tissues cannot be distinguished when using two fixed frequencies. We have developed a system that generates signals from 8-10(3) kHz and applies two of these signals simultaneously to the body through a broadband current mirror. Great care has been taken in the design of the current injection multiplexer in order to keep the current source output capacitance as low as possible. Furthermore design of the layout of the patient interface board, in order to reduce feedthrough capacitances, also needs great care. Other parameters for driving and detection sections have been designed according to our results from FEM and circuit simulations including skin and electrode effects. Simulations using FEM with available tissue impedance data and preliminary measurements in a discrete phantom show that static imaging is possible for both the real and imaginary parts of the impedance.</p>","PeriodicalId":77070,"journal":{"name":"Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics","volume":"13 Suppl A ","pages":"61-5"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/0143-0815/13/a/013","citationCount":"31","resultStr":"{\"title\":\"A broadband system for multifrequency static imaging in electrical impedance tomography.\",\"authors\":\"P J Riu, J Rosell, A Lozano, R Pallàs-Areny\",\"doi\":\"10.1088/0143-0815/13/a/013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A widely accepted method for static imaging in electrical impedance tomography (EIT) is to measure at two frequencies. The choice of measurement frequencies is application-dependent because some different tissues cannot be distinguished when using two fixed frequencies. We have developed a system that generates signals from 8-10(3) kHz and applies two of these signals simultaneously to the body through a broadband current mirror. Great care has been taken in the design of the current injection multiplexer in order to keep the current source output capacitance as low as possible. Furthermore design of the layout of the patient interface board, in order to reduce feedthrough capacitances, also needs great care. Other parameters for driving and detection sections have been designed according to our results from FEM and circuit simulations including skin and electrode effects. Simulations using FEM with available tissue impedance data and preliminary measurements in a discrete phantom show that static imaging is possible for both the real and imaginary parts of the impedance.</p>\",\"PeriodicalId\":77070,\"journal\":{\"name\":\"Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics\",\"volume\":\"13 Suppl A \",\"pages\":\"61-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/0143-0815/13/a/013\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0143-0815/13/a/013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0143-0815/13/a/013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A broadband system for multifrequency static imaging in electrical impedance tomography.
A widely accepted method for static imaging in electrical impedance tomography (EIT) is to measure at two frequencies. The choice of measurement frequencies is application-dependent because some different tissues cannot be distinguished when using two fixed frequencies. We have developed a system that generates signals from 8-10(3) kHz and applies two of these signals simultaneously to the body through a broadband current mirror. Great care has been taken in the design of the current injection multiplexer in order to keep the current source output capacitance as low as possible. Furthermore design of the layout of the patient interface board, in order to reduce feedthrough capacitances, also needs great care. Other parameters for driving and detection sections have been designed according to our results from FEM and circuit simulations including skin and electrode effects. Simulations using FEM with available tissue impedance data and preliminary measurements in a discrete phantom show that static imaging is possible for both the real and imaginary parts of the impedance.