Rafael Ramón Vigo, Noé Pérez-Higueras, F. Caballero, L. Merino
{"title":"将人类的导航行为转化为机器人的局部规划器","authors":"Rafael Ramón Vigo, Noé Pérez-Higueras, F. Caballero, L. Merino","doi":"10.1109/ROMAN.2014.6926347","DOIUrl":null,"url":null,"abstract":"Robot navigation in human environments is an active research area that poses serious challenges. Among them, social navigation and human-awareness has gain lot of attention in the last years due to its important role in human safety and robot acceptance. Learning has been proposed as a more principled way of estimating the insights of human social interactions. In this paper, inverse reinforcement learning is analyzed as a tool to transfer the typical human navigation behavior to the robot local navigation planner. Observations of real human motion interactions found in one publicly available datasets are employed to learn a cost function, which is then used to determine a navigation controller. The paper presents an analysis of the performance of the controller behavior in two different scenarios interacting with persons, and a comparison of this approach with a Proxemics-based method.","PeriodicalId":235810,"journal":{"name":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","volume":"817 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Transferring human navigation behaviors into a robot local planner\",\"authors\":\"Rafael Ramón Vigo, Noé Pérez-Higueras, F. Caballero, L. Merino\",\"doi\":\"10.1109/ROMAN.2014.6926347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot navigation in human environments is an active research area that poses serious challenges. Among them, social navigation and human-awareness has gain lot of attention in the last years due to its important role in human safety and robot acceptance. Learning has been proposed as a more principled way of estimating the insights of human social interactions. In this paper, inverse reinforcement learning is analyzed as a tool to transfer the typical human navigation behavior to the robot local navigation planner. Observations of real human motion interactions found in one publicly available datasets are employed to learn a cost function, which is then used to determine a navigation controller. The paper presents an analysis of the performance of the controller behavior in two different scenarios interacting with persons, and a comparison of this approach with a Proxemics-based method.\",\"PeriodicalId\":235810,\"journal\":{\"name\":\"The 23rd IEEE International Symposium on Robot and Human Interactive Communication\",\"volume\":\"817 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE International Symposium on Robot and Human Interactive Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.2014.6926347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2014.6926347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transferring human navigation behaviors into a robot local planner
Robot navigation in human environments is an active research area that poses serious challenges. Among them, social navigation and human-awareness has gain lot of attention in the last years due to its important role in human safety and robot acceptance. Learning has been proposed as a more principled way of estimating the insights of human social interactions. In this paper, inverse reinforcement learning is analyzed as a tool to transfer the typical human navigation behavior to the robot local navigation planner. Observations of real human motion interactions found in one publicly available datasets are employed to learn a cost function, which is then used to determine a navigation controller. The paper presents an analysis of the performance of the controller behavior in two different scenarios interacting with persons, and a comparison of this approach with a Proxemics-based method.