面向浮点到定点转换的可扩展源级精度分析

Gaël Deest, Tomofumi Yuki, O. Sentieys, Steven Derrien
{"title":"面向浮点到定点转换的可扩展源级精度分析","authors":"Gaël Deest, Tomofumi Yuki, O. Sentieys, Steven Derrien","doi":"10.1109/ICCAD.2014.7001432","DOIUrl":null,"url":null,"abstract":"In embedded systems, many numerical algorithms are implemented with fixed-point arithmetic to meet area cost and power constraints. Fixed-point encoding decisions can significantly affect cost and performance. To evaluate their impact on accuracy, designers resort to simulations. Their high running-time prevents thorough exploration of the design-space. To address this issue, analytical modeling techniques have been proposed, but their applicability is limited by scalability issues. In this paper, we extend these techniques to a larger class of programs. We use polyhedral methods to extract a more compact, graph-based representation of the program. We validate our approach with a several image and signal processing algorithms.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Toward scalable source level accuracy analysis for floating-point to fixed-point conversion\",\"authors\":\"Gaël Deest, Tomofumi Yuki, O. Sentieys, Steven Derrien\",\"doi\":\"10.1109/ICCAD.2014.7001432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In embedded systems, many numerical algorithms are implemented with fixed-point arithmetic to meet area cost and power constraints. Fixed-point encoding decisions can significantly affect cost and performance. To evaluate their impact on accuracy, designers resort to simulations. Their high running-time prevents thorough exploration of the design-space. To address this issue, analytical modeling techniques have been proposed, but their applicability is limited by scalability issues. In this paper, we extend these techniques to a larger class of programs. We use polyhedral methods to extract a more compact, graph-based representation of the program. We validate our approach with a several image and signal processing algorithms.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在嵌入式系统中,许多数值算法都是用定点算法来实现的,以满足面积成本和功耗的限制。定点编码决策会显著影响成本和性能。为了评估它们对精度的影响,设计师们求助于模拟。它们的高运行时间阻碍了对设计空间的彻底探索。为了解决这个问题,已经提出了分析建模技术,但是它们的适用性受到可伸缩性问题的限制。在本文中,我们将这些技术扩展到更大的程序类。我们使用多面体方法来提取更紧凑的、基于图的程序表示。我们用几种图像和信号处理算法验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward scalable source level accuracy analysis for floating-point to fixed-point conversion
In embedded systems, many numerical algorithms are implemented with fixed-point arithmetic to meet area cost and power constraints. Fixed-point encoding decisions can significantly affect cost and performance. To evaluate their impact on accuracy, designers resort to simulations. Their high running-time prevents thorough exploration of the design-space. To address this issue, analytical modeling techniques have been proposed, but their applicability is limited by scalability issues. In this paper, we extend these techniques to a larger class of programs. We use polyhedral methods to extract a more compact, graph-based representation of the program. We validate our approach with a several image and signal processing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信