{"title":"纳米流体填充太阳能集热器自然对流热水力分析","authors":"A. Saha, N. Manna, Koushik Ghosh","doi":"10.1109/IEMRE52042.2021.9387014","DOIUrl":null,"url":null,"abstract":"The scope of present work is to investigate natural convection in a solar collector filled with Al2 O3-water nanofluid. The numerical simulation is carried out for single-phase nanofluid using the finite volume approach. The investigation is performed in a two-dimensional differentially heated solar collector. The simulation is carried out for different inclination angles varies from a horizontal position to vertical position maintaining a fixed value of Rayleigh number, aspect ratio and solid volume fraction. The details of the flow and heat transfer are studied using streamlines and isotherms. The irreversibility associated with flow and heat transfer is studied using the rate of entropy generation due to thermal conduction and viscous dissipation. It is observed that the heat transfer due to convection and total entropy generation monotonically increases as the solar collector is tilted from horizontal position to vertical position.","PeriodicalId":202287,"journal":{"name":"2021 Innovations in Energy Management and Renewable Resources(52042)","volume":"281 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Hydraulic Analysis of Natural Convection in a Solar Collector Filled with Nanofluid\",\"authors\":\"A. Saha, N. Manna, Koushik Ghosh\",\"doi\":\"10.1109/IEMRE52042.2021.9387014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scope of present work is to investigate natural convection in a solar collector filled with Al2 O3-water nanofluid. The numerical simulation is carried out for single-phase nanofluid using the finite volume approach. The investigation is performed in a two-dimensional differentially heated solar collector. The simulation is carried out for different inclination angles varies from a horizontal position to vertical position maintaining a fixed value of Rayleigh number, aspect ratio and solid volume fraction. The details of the flow and heat transfer are studied using streamlines and isotherms. The irreversibility associated with flow and heat transfer is studied using the rate of entropy generation due to thermal conduction and viscous dissipation. It is observed that the heat transfer due to convection and total entropy generation monotonically increases as the solar collector is tilted from horizontal position to vertical position.\",\"PeriodicalId\":202287,\"journal\":{\"name\":\"2021 Innovations in Energy Management and Renewable Resources(52042)\",\"volume\":\"281 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Innovations in Energy Management and Renewable Resources(52042)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMRE52042.2021.9387014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Innovations in Energy Management and Renewable Resources(52042)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMRE52042.2021.9387014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Hydraulic Analysis of Natural Convection in a Solar Collector Filled with Nanofluid
The scope of present work is to investigate natural convection in a solar collector filled with Al2 O3-water nanofluid. The numerical simulation is carried out for single-phase nanofluid using the finite volume approach. The investigation is performed in a two-dimensional differentially heated solar collector. The simulation is carried out for different inclination angles varies from a horizontal position to vertical position maintaining a fixed value of Rayleigh number, aspect ratio and solid volume fraction. The details of the flow and heat transfer are studied using streamlines and isotherms. The irreversibility associated with flow and heat transfer is studied using the rate of entropy generation due to thermal conduction and viscous dissipation. It is observed that the heat transfer due to convection and total entropy generation monotonically increases as the solar collector is tilted from horizontal position to vertical position.