弱纹理工业对象的监督姿态和运动估计

Valentin Borsu, P. Payeur
{"title":"弱纹理工业对象的监督姿态和运动估计","authors":"Valentin Borsu, P. Payeur","doi":"10.1109/ROSE.2011.6058546","DOIUrl":null,"url":null,"abstract":"Visually estimating the motion of automotive body parts over an assembly line represents a major challenge for classical feature detection, matching and tracking algorithms due to the lack of a rich surface texture. But as feature extraction and matching remain vital for accurate object pose and motion estimation, this paper presents a thorough investigation on the actual reliability of popular feature extraction and matching tools in terms of stability and robustness for industrial applications. Severe tracking errors that result from brightness variations and occlusions are corrected with the integration of an original supervisory approach that relies on the encoding of a minimum amount of a priori information about the general appearance of the objects. The proposed solution is experimentally validated on an application for quality control in the automotive industry.","PeriodicalId":361472,"journal":{"name":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Supervised pose and motion estimation over weakly textured industrial objects\",\"authors\":\"Valentin Borsu, P. Payeur\",\"doi\":\"10.1109/ROSE.2011.6058546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visually estimating the motion of automotive body parts over an assembly line represents a major challenge for classical feature detection, matching and tracking algorithms due to the lack of a rich surface texture. But as feature extraction and matching remain vital for accurate object pose and motion estimation, this paper presents a thorough investigation on the actual reliability of popular feature extraction and matching tools in terms of stability and robustness for industrial applications. Severe tracking errors that result from brightness variations and occlusions are corrected with the integration of an original supervisory approach that relies on the encoding of a minimum amount of a priori information about the general appearance of the objects. The proposed solution is experimentally validated on an application for quality control in the automotive industry.\",\"PeriodicalId\":361472,\"journal\":{\"name\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE.2011.6058546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2011.6058546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于缺乏丰富的表面纹理,对汽车车身零件在装配线上的运动进行视觉估计是传统特征检测、匹配和跟踪算法面临的主要挑战。但由于特征提取和匹配对于准确的目标姿态和运动估计至关重要,本文从工业应用的稳定性和鲁棒性方面对流行的特征提取和匹配工具的实际可靠性进行了深入的研究。由亮度变化和遮挡引起的严重跟踪误差可以通过集成原始监督方法来纠正,该方法依赖于对物体总体外观的最少量先验信息进行编码。该解决方案在汽车行业的质量控制应用中得到了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised pose and motion estimation over weakly textured industrial objects
Visually estimating the motion of automotive body parts over an assembly line represents a major challenge for classical feature detection, matching and tracking algorithms due to the lack of a rich surface texture. But as feature extraction and matching remain vital for accurate object pose and motion estimation, this paper presents a thorough investigation on the actual reliability of popular feature extraction and matching tools in terms of stability and robustness for industrial applications. Severe tracking errors that result from brightness variations and occlusions are corrected with the integration of an original supervisory approach that relies on the encoding of a minimum amount of a priori information about the general appearance of the objects. The proposed solution is experimentally validated on an application for quality control in the automotive industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信