K. Zia, A. Ferscha, A. Riener, M. Wirz, D. Roggen, Kamil Kloch, P. Lukowicz
{"title":"基于场景的超大规模模拟建模","authors":"K. Zia, A. Ferscha, A. Riener, M. Wirz, D. Roggen, Kamil Kloch, P. Lukowicz","doi":"10.1109/DS-RT.2010.20","DOIUrl":null,"url":null,"abstract":"In order to develop complexity science based modeling, prediction and simulation methods for large scale socio-technical systems in an Ambient Intelligence (AmI) based smart environment, we propose a scenario based modeling approach. With a case study on AmI technology to support the evacuation from emergency scenarios, i.e. the Life Belt, a wearable computing systems for vibro-tactile directional guidance, we introduce the concept of model scaling from a micro to a macro level. Aligned with the scenario, we present how crowd simulation strategies encoded into a small scale simulation setup can be extended to a mixed-level simulation based on combining model aspects also coming from the large scale model. The experimental results of a real evacuation trail at a local railway station are incorporated to compare the evacuation efficiency for three strategies: (i) Potential Map, (ii) Evacuees familiarity of the exits and (iii) Exits usage optimization. A comparison with the earlier results from small scale simulation suggest that a real large scale simulation results may not be similar to that of small scale simulation due to dynamics of crowd built up and complexity of building structure.","PeriodicalId":275623,"journal":{"name":"2010 IEEE/ACM 14th International Symposium on Distributed Simulation and Real Time Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Scenario Based Modeling for Very Large Scale Simulations\",\"authors\":\"K. Zia, A. Ferscha, A. Riener, M. Wirz, D. Roggen, Kamil Kloch, P. Lukowicz\",\"doi\":\"10.1109/DS-RT.2010.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to develop complexity science based modeling, prediction and simulation methods for large scale socio-technical systems in an Ambient Intelligence (AmI) based smart environment, we propose a scenario based modeling approach. With a case study on AmI technology to support the evacuation from emergency scenarios, i.e. the Life Belt, a wearable computing systems for vibro-tactile directional guidance, we introduce the concept of model scaling from a micro to a macro level. Aligned with the scenario, we present how crowd simulation strategies encoded into a small scale simulation setup can be extended to a mixed-level simulation based on combining model aspects also coming from the large scale model. The experimental results of a real evacuation trail at a local railway station are incorporated to compare the evacuation efficiency for three strategies: (i) Potential Map, (ii) Evacuees familiarity of the exits and (iii) Exits usage optimization. A comparison with the earlier results from small scale simulation suggest that a real large scale simulation results may not be similar to that of small scale simulation due to dynamics of crowd built up and complexity of building structure.\",\"PeriodicalId\":275623,\"journal\":{\"name\":\"2010 IEEE/ACM 14th International Symposium on Distributed Simulation and Real Time Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/ACM 14th International Symposium on Distributed Simulation and Real Time Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DS-RT.2010.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM 14th International Symposium on Distributed Simulation and Real Time Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scenario Based Modeling for Very Large Scale Simulations
In order to develop complexity science based modeling, prediction and simulation methods for large scale socio-technical systems in an Ambient Intelligence (AmI) based smart environment, we propose a scenario based modeling approach. With a case study on AmI technology to support the evacuation from emergency scenarios, i.e. the Life Belt, a wearable computing systems for vibro-tactile directional guidance, we introduce the concept of model scaling from a micro to a macro level. Aligned with the scenario, we present how crowd simulation strategies encoded into a small scale simulation setup can be extended to a mixed-level simulation based on combining model aspects also coming from the large scale model. The experimental results of a real evacuation trail at a local railway station are incorporated to compare the evacuation efficiency for three strategies: (i) Potential Map, (ii) Evacuees familiarity of the exits and (iii) Exits usage optimization. A comparison with the earlier results from small scale simulation suggest that a real large scale simulation results may not be similar to that of small scale simulation due to dynamics of crowd built up and complexity of building structure.