不平衡数据集的混合机器学习方法

A. Lipitakis, S. Kotsiantis
{"title":"不平衡数据集的混合机器学习方法","authors":"A. Lipitakis, S. Kotsiantis","doi":"10.1109/IISA.2014.6878762","DOIUrl":null,"url":null,"abstract":"In the Machine Learning systems several imbalanced data sets exhibit skewed class distributions in which most cases are allocated to a class and far fewer cases to a smaller one. A classifier induced from an imbalanced data set has usually a low error rate for the majority class and an unacceptable error rate for the minority class. In this paper a synoptic review of the various related methodologies is given, a new ensemble methodology is introduced and an experimental study with other ensembles is presented. The proposed method that combines the power of OverBagging and Rotation Forest algorithms improves the identification of a difficult small class, while keeping the classification ability of the other class in an acceptable accuracy level.","PeriodicalId":298835,"journal":{"name":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","volume":"19 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A hybrid Machine Learning methodology for imbalanced datasets\",\"authors\":\"A. Lipitakis, S. Kotsiantis\",\"doi\":\"10.1109/IISA.2014.6878762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Machine Learning systems several imbalanced data sets exhibit skewed class distributions in which most cases are allocated to a class and far fewer cases to a smaller one. A classifier induced from an imbalanced data set has usually a low error rate for the majority class and an unacceptable error rate for the minority class. In this paper a synoptic review of the various related methodologies is given, a new ensemble methodology is introduced and an experimental study with other ensembles is presented. The proposed method that combines the power of OverBagging and Rotation Forest algorithms improves the identification of a difficult small class, while keeping the classification ability of the other class in an acceptable accuracy level.\",\"PeriodicalId\":298835,\"journal\":{\"name\":\"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications\",\"volume\":\"19 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2014.6878762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2014.6878762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在机器学习系统中,一些不平衡的数据集表现出倾斜的类分布,其中大多数情况被分配到一个类,而更少的情况被分配到一个较小的类。从不平衡数据集生成的分类器通常对多数类具有较低的错误率,而对少数类具有不可接受的错误率。本文概述了各种相关的方法,介绍了一种新的集成方法,并对其他集成方法进行了实验研究。该方法结合了OverBagging算法和Rotation Forest算法的力量,提高了对困难小类的识别,同时使其他类的分类能力保持在可接受的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid Machine Learning methodology for imbalanced datasets
In the Machine Learning systems several imbalanced data sets exhibit skewed class distributions in which most cases are allocated to a class and far fewer cases to a smaller one. A classifier induced from an imbalanced data set has usually a low error rate for the majority class and an unacceptable error rate for the minority class. In this paper a synoptic review of the various related methodologies is given, a new ensemble methodology is introduced and an experimental study with other ensembles is presented. The proposed method that combines the power of OverBagging and Rotation Forest algorithms improves the identification of a difficult small class, while keeping the classification ability of the other class in an acceptable accuracy level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信