{"title":"具有调制带宽和光功率要求的量子阱激光器的最小工作电流","authors":"M. McAdams, B. Zhao, T.R. Chen, J. Feng, A. Yariv","doi":"10.1364/slada.1995.ma.3","DOIUrl":null,"url":null,"abstract":"When semiconductor lasers are used in optical telecommunication and optical interconnect applications, it is desirable to have as low an electrical power consumption as possible, i.e. a low operating current. However, if used in a high data transmission rate system, there may be a minimum requisite modulation bandwidth. In addition, signal-to-noise considerations often demand a minimum optical output power. While lowering the threshold current often improves the bandwidth and output power at a given operating current, it is not true that a laser optimized solely for the lowest threshold current will have the lowest operating current when biased to meet the requirements of a particular system. In this talk we discuss how the laser device parameters are optimized to produce the lowest operating current in applications with given bandwidth and optical power requirements.","PeriodicalId":365685,"journal":{"name":"Semiconductor Lasers Advanced Devices and Applications","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing the Operating Current of Quantum Well Lasers with Modulation Bandwidth and Optical Power Requirements\",\"authors\":\"M. McAdams, B. Zhao, T.R. Chen, J. Feng, A. Yariv\",\"doi\":\"10.1364/slada.1995.ma.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When semiconductor lasers are used in optical telecommunication and optical interconnect applications, it is desirable to have as low an electrical power consumption as possible, i.e. a low operating current. However, if used in a high data transmission rate system, there may be a minimum requisite modulation bandwidth. In addition, signal-to-noise considerations often demand a minimum optical output power. While lowering the threshold current often improves the bandwidth and output power at a given operating current, it is not true that a laser optimized solely for the lowest threshold current will have the lowest operating current when biased to meet the requirements of a particular system. In this talk we discuss how the laser device parameters are optimized to produce the lowest operating current in applications with given bandwidth and optical power requirements.\",\"PeriodicalId\":365685,\"journal\":{\"name\":\"Semiconductor Lasers Advanced Devices and Applications\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Lasers Advanced Devices and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/slada.1995.ma.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Lasers Advanced Devices and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/slada.1995.ma.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimizing the Operating Current of Quantum Well Lasers with Modulation Bandwidth and Optical Power Requirements
When semiconductor lasers are used in optical telecommunication and optical interconnect applications, it is desirable to have as low an electrical power consumption as possible, i.e. a low operating current. However, if used in a high data transmission rate system, there may be a minimum requisite modulation bandwidth. In addition, signal-to-noise considerations often demand a minimum optical output power. While lowering the threshold current often improves the bandwidth and output power at a given operating current, it is not true that a laser optimized solely for the lowest threshold current will have the lowest operating current when biased to meet the requirements of a particular system. In this talk we discuss how the laser device parameters are optimized to produce the lowest operating current in applications with given bandwidth and optical power requirements.