一种使用机器学习的假新闻检测创新方法

Maya Hisham, R. Hasan, Saqib Hussain
{"title":"一种使用机器学习的假新闻检测创新方法","authors":"Maya Hisham, R. Hasan, Saqib Hussain","doi":"10.33317/ssurj.565","DOIUrl":null,"url":null,"abstract":"This research aims to increase people's awareness of fake news on online social networks and help them determine the reliability of information they consume. It investigates methods for detecting fake news sources, authors, and subjects on online social networks. The project uses an open-source online dataset of fake and real news to determine the credibility of news. Various text feature extraction techniques and classification algorithms are reviewed, with the Support Vector Machine (SVM) linear classification algorithm using TF-IDF feature extraction achieving the highest accuracy of 99.36%. Random Forest (RF) and Naive Bayes (NB) had accuracy scores of 98.25% and 94.74%, respectively.","PeriodicalId":361186,"journal":{"name":"Sir Syed University Research Journal of Engineering & Technology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Innovative Approach for Fake News Detection using Machine Learning\",\"authors\":\"Maya Hisham, R. Hasan, Saqib Hussain\",\"doi\":\"10.33317/ssurj.565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to increase people's awareness of fake news on online social networks and help them determine the reliability of information they consume. It investigates methods for detecting fake news sources, authors, and subjects on online social networks. The project uses an open-source online dataset of fake and real news to determine the credibility of news. Various text feature extraction techniques and classification algorithms are reviewed, with the Support Vector Machine (SVM) linear classification algorithm using TF-IDF feature extraction achieving the highest accuracy of 99.36%. Random Forest (RF) and Naive Bayes (NB) had accuracy scores of 98.25% and 94.74%, respectively.\",\"PeriodicalId\":361186,\"journal\":{\"name\":\"Sir Syed University Research Journal of Engineering & Technology\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sir Syed University Research Journal of Engineering & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33317/ssurj.565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sir Syed University Research Journal of Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33317/ssurj.565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究旨在提高人们对在线社交网络上虚假新闻的认识,并帮助他们确定所消费信息的可靠性。它调查了在线社交网络上检测假新闻来源、作者和主题的方法。该项目使用一个开源的假新闻和真实新闻的在线数据集来确定新闻的可信度。综述了各种文本特征提取技术和分类算法,其中使用TF-IDF特征提取的支持向量机(SVM)线性分类算法准确率最高,达到99.36%。随机森林(RF)和朴素贝叶斯(NB)的准确率分别为98.25%和94.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Innovative Approach for Fake News Detection using Machine Learning
This research aims to increase people's awareness of fake news on online social networks and help them determine the reliability of information they consume. It investigates methods for detecting fake news sources, authors, and subjects on online social networks. The project uses an open-source online dataset of fake and real news to determine the credibility of news. Various text feature extraction techniques and classification algorithms are reviewed, with the Support Vector Machine (SVM) linear classification algorithm using TF-IDF feature extraction achieving the highest accuracy of 99.36%. Random Forest (RF) and Naive Bayes (NB) had accuracy scores of 98.25% and 94.74%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信