利用神经网络快速准确地预测封装电流

Yanan Liu, Tianjian Lu, Jin Y. Kim, Ken Wu, Jianming Jin
{"title":"利用神经网络快速准确地预测封装电流","authors":"Yanan Liu, Tianjian Lu, Jin Y. Kim, Ken Wu, Jianming Jin","doi":"10.1109/ISEMC.2019.8825314","DOIUrl":null,"url":null,"abstract":"Electromigration (EM) has become one major reliability concern in modern integrated circuit (IC) packages. EM is caused by large currents flowing in metals and the resulting mean time to failure (MTTF) is highly dependent on the maximum current value. We here propose a scheme for fast and accurate prediction of the maximum current on the ball grid arrays (BGAs) in a package given the pin current information of the die. The proposed scheme uses neural networks to learn the resistance network of the package and achieve the non-linear current mapping. The fast prediction tool can be used for analysis and design exploration of the pin assignment on the die level.","PeriodicalId":137753,"journal":{"name":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast and Accurate Current Prediction in Packages Using Neural Networks\",\"authors\":\"Yanan Liu, Tianjian Lu, Jin Y. Kim, Ken Wu, Jianming Jin\",\"doi\":\"10.1109/ISEMC.2019.8825314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromigration (EM) has become one major reliability concern in modern integrated circuit (IC) packages. EM is caused by large currents flowing in metals and the resulting mean time to failure (MTTF) is highly dependent on the maximum current value. We here propose a scheme for fast and accurate prediction of the maximum current on the ball grid arrays (BGAs) in a package given the pin current information of the die. The proposed scheme uses neural networks to learn the resistance network of the package and achieve the non-linear current mapping. The fast prediction tool can be used for analysis and design exploration of the pin assignment on the die level.\",\"PeriodicalId\":137753,\"journal\":{\"name\":\"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2019.8825314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2019.8825314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电迁移(EM)已成为现代集成电路封装中一个主要的可靠性问题。电磁是由金属中流过的大电流引起的,产生的平均失效时间(MTTF)高度依赖于最大电流值。本文提出了一种基于芯片引脚电流信息快速准确预测封装中球栅阵列(bga)最大电流的方案。该方案利用神经网络学习封装的电阻网络,实现非线性电流映射。该快速预测工具可用于模具层面销位分配的分析和设计探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Accurate Current Prediction in Packages Using Neural Networks
Electromigration (EM) has become one major reliability concern in modern integrated circuit (IC) packages. EM is caused by large currents flowing in metals and the resulting mean time to failure (MTTF) is highly dependent on the maximum current value. We here propose a scheme for fast and accurate prediction of the maximum current on the ball grid arrays (BGAs) in a package given the pin current information of the die. The proposed scheme uses neural networks to learn the resistance network of the package and achieve the non-linear current mapping. The fast prediction tool can be used for analysis and design exploration of the pin assignment on the die level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信