服务机器人的时变行人流模型

Tomáš Vintr, Sergi Molina Mellado, Ransalu Senanayake, G. Broughton, Zhi Yan, Jirí Ulrich, T. Kucner, Chittaranjan Srinivas Swaminathan, Filip Majer, M. Stachová, A. Lilienthal, T. Krajník
{"title":"服务机器人的时变行人流模型","authors":"Tomáš Vintr, Sergi Molina Mellado, Ransalu Senanayake, G. Broughton, Zhi Yan, Jirí Ulrich, T. Kucner, Chittaranjan Srinivas Swaminathan, Filip Majer, M. Stachová, A. Lilienthal, T. Krajník","doi":"10.1109/ECMR.2019.8870909","DOIUrl":null,"url":null,"abstract":"We present a human-centric spatiotemporal model for service robots operating in densely populated environments for long time periods. The method integrates observations of pedestrians performed by a mobile robot at different locations and times into a memory efficient model, that represents the spatial layout of natural pedestrian flows and how they change over time. To represent temporal variations of the observed flows, our method does not model the time in a linear fashion, but by several dimensions wrapped into themselves. This representation of time can capture long-term (i.e. days to weeks) periodic patterns of peoples' routines and habits. Knowledge of these patterns allows making long-term predictions of future human presence and walking directions, which can support mobile robot navigation in human-populated environments. Using datasets gathered for several weeks, we compare the model to state-of-the-art methods for pedestrian flow modelling.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Time-varying Pedestrian Flow Models for Service Robots\",\"authors\":\"Tomáš Vintr, Sergi Molina Mellado, Ransalu Senanayake, G. Broughton, Zhi Yan, Jirí Ulrich, T. Kucner, Chittaranjan Srinivas Swaminathan, Filip Majer, M. Stachová, A. Lilienthal, T. Krajník\",\"doi\":\"10.1109/ECMR.2019.8870909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a human-centric spatiotemporal model for service robots operating in densely populated environments for long time periods. The method integrates observations of pedestrians performed by a mobile robot at different locations and times into a memory efficient model, that represents the spatial layout of natural pedestrian flows and how they change over time. To represent temporal variations of the observed flows, our method does not model the time in a linear fashion, but by several dimensions wrapped into themselves. This representation of time can capture long-term (i.e. days to weeks) periodic patterns of peoples' routines and habits. Knowledge of these patterns allows making long-term predictions of future human presence and walking directions, which can support mobile robot navigation in human-populated environments. Using datasets gathered for several weeks, we compare the model to state-of-the-art methods for pedestrian flow modelling.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们提出了一个以人为中心的服务机器人在人口密集的环境中长时间工作的时空模型。该方法将移动机器人在不同地点和时间对行人的观察整合到一个记忆效率模型中,该模型代表了自然行人流的空间布局以及它们如何随时间变化。为了表示观测到的流动的时间变化,我们的方法不是以线性方式对时间进行建模,而是将几个维度包裹在自己身上。这种时间表示可以捕捉人们日常活动和习惯的长期(即几天到几周)周期模式。了解这些模式可以对未来人类的存在和行走方向进行长期预测,这可以支持移动机器人在人口稠密的环境中导航。使用几周收集的数据集,我们将该模型与最先进的行人流建模方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-varying Pedestrian Flow Models for Service Robots
We present a human-centric spatiotemporal model for service robots operating in densely populated environments for long time periods. The method integrates observations of pedestrians performed by a mobile robot at different locations and times into a memory efficient model, that represents the spatial layout of natural pedestrian flows and how they change over time. To represent temporal variations of the observed flows, our method does not model the time in a linear fashion, but by several dimensions wrapped into themselves. This representation of time can capture long-term (i.e. days to weeks) periodic patterns of peoples' routines and habits. Knowledge of these patterns allows making long-term predictions of future human presence and walking directions, which can support mobile robot navigation in human-populated environments. Using datasets gathered for several weeks, we compare the model to state-of-the-art methods for pedestrian flow modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信